Can variation in canopy \(\delta\)13C be attributed to changes in tree height? An investigation of three conifer species

Abstract

Key message

Evidence supporting hydraulic limitation hypothesis was found using foliar δ13C in combination with nitrogen content per unit leaf area and statistical partitioning for three conifer species.

Abstract

One theory behind the productivity decline of mature forests is the hydraulic limitation hypothesis (HLH); leaf-level gas exchange is reduced with increasing forest canopy height via increased hydraulic resistance in the xylem pathway, which in turn limits photosynthesis via stomatal regulation. Foliar \(\delta\)13C can be used to assess the HLH as it reflects the history of leaf-level gas exchange. However, this method should be used with caution as co-varying factors, including light levels and foliar nutrient status, can also influence foliar \(\delta\)13C. We explore the potential use of foliar \(\delta\)13C to assess leaf-level hydraulic limitation using three coniferous species across three height classes (short, intermediate and tall) in northern Idaho, USA. Foliar samples were collected from multiple canopy locations varying in height from each height class to measure \(\delta\)13C of bulk foliar materials as well as sugar and starch extracted from the samples. We also quantified nitrogen content per unit leaf area (Narea) as an integrated measure of nutrient status and light environment of a given foliar sample, which can partly account for various non-stomatal limitations for photosynthesis, and thus affect foliar \(\delta\)13C. Using sequential ANOVAs, we tested the hypothesis that foliar \(\delta\)13C variation was attributable to foliar sample height changes after accounting for Narea. The hypothesis was supported by analyses using foliage samples from the top canopy location across the three height classes for each conifer species, especially for bulk foliage and extracted sugar. In conclusion, we found evidence supporting the HLH using foliar \(\delta\)13C from three conifer species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

All the data used in this study can be found as an electronic supplemental material.

References

  1. Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Ambrose AR, Sillett SC, Dawson TE (2009) Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ 32:743–757

    PubMed  Article  PubMed Central  Google Scholar 

  3. Bachofen C, D’Odorico P, Buchmann N (2020) Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192:323–339

    PubMed  Article  PubMed Central  Google Scholar 

  4. Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Baker KV, Tai X, Miller ML, Johnson DM (2019) Six co-occurring conifer species in northern Idaho exhibit a continuum of hydraulic strategies during an extreme drought year. AoB Plants 11:plz056

    PubMed  PubMed Central  Article  Google Scholar 

  6. Baret M, Pepin S, Ward C, Pothier D (2015) Long-term changes in belowground and aboveground resource allocation of boreal forest stands. For Ecol Manag 350:62–69

    Article  Google Scholar 

  7. Barnard HR, Ryan M (2003) A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna. Plant Cell Environ 26:1235–1245

    Article  Google Scholar 

  8. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version. 1:1-23. Accessed 2 May 2020

  9. Berry SC, Varney GT, Flanagan LB (1997) Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 109:499–506

    PubMed  Article  PubMed Central  Google Scholar 

  10. Blessing CH, Werner RA, Siegwolf R, Buchmann N (2015) Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiol 35:585–598

    CAS  PubMed  Article  Google Scholar 

  11. Bown HE, Watt MS, Mason EG, Clinton PW, Whitehead D (2009) The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiol 29:1143–1151

    CAS  PubMed  Article  Google Scholar 

  12. Brienen R, Gloor E, Clerici S, Newton R, Arppe L, Boom A, Bottrell S, Callaghan M, Heaton T, Helama S (2017) Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat Commun 8:1–10

    CAS  Article  Google Scholar 

  13. Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol 88:1418–1424

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Brugnoli E, Lauteri M, Guido M (1994) Carbon isotope discrimination and photosynthesis: response and adaptation to environmental stress. In: de Kouchkovsky Y, Larher F (eds) Plant sciences. Second General Colloquium on Plant Sciences Universite de Renners, Renners, pp 269–272

    Google Scholar 

  15. Brugnoli E, Scartazza A, Lauteri M, Monteverdi M, Máguas C (1998) Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: Friffiths H (ed) Stable isotopes. Integration of biological, ecological geochemical processes. BIOS Scientific Publishers, Oxford, pp 133–144

    Google Scholar 

  16. Buchmann N, Kao W-Y, Ehleringer J (1997) Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110: 109–119Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292

    Google Scholar 

  17. Buckley TN (2005) The control of stomata by water balance. New Phytologist. 168:275-292.

  18. Chatterton NJ, Silvius JE (1981) Photosynthate partitioning into starch in soybean leaves: II. Irradiance level and daily photosynthetic period duration effects. Plant Physiol 67:257–260

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Chen HY (1997) Interspecific responses of planted seedlings to light availability in interior British Columbia: survival, growth, allometric patterns, and specific leaf area. Can J For Res 27:1383–1393

    Article  Google Scholar 

  20. Chen HY, Klinka K, Kayahara GJ (1996) Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings. Can J For Res 26:1149–1157

    Article  Google Scholar 

  21. Coble AP, Fogel ML, Parker GG (2017) Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiol 37:1415–1425

    PubMed  Article  Google Scholar 

  22. Damesin C, Lelarge C (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ 26:207–219

    Article  Google Scholar 

  23. Dawson TE (1996) Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol 16:263–272

    PubMed  Article  Google Scholar 

  24. Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T (2018) New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol 217:571–585

    CAS  PubMed  Article  Google Scholar 

  25. Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural carbon in woody plants. Annu Rev Plant Biol 65:667–687

    CAS  PubMed  Article  Google Scholar 

  26. Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 39:435–448

    CAS  PubMed  Article  Google Scholar 

  27. Duursma R, Marshall J (2006) Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees 20:496–506

    Article  Google Scholar 

  28. Ellsworth D, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    CAS  PubMed  Article  Google Scholar 

  29. Finklin AI (1983) Climate of Priest River experimental forest, northern Idaho. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-159

  30. Flanagan LB, Brooks JR, Varney GT, Berry SC, Ehleringer JR (1996) Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem Cy 10:629–640

    CAS  Article  Google Scholar 

  31. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Flexas J, Ribas-Carbo M, Diaz-Espejo A, GalmES J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    CAS  PubMed  Article  Google Scholar 

  33. Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D‘Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M, (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Change 5:579–583

    CAS  Article  Google Scholar 

  34. Galiano L, Timofeeva G, Saurer M, Siegwolf R, Martínez-Vilalta J, Hommel R, Gessler A (2017) The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. Plant Cell Environ 40:1711–1724

    CAS  PubMed  Article  Google Scholar 

  35. Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:796–818

    CAS  PubMed  Article  Google Scholar 

  36. Gessler A, Keitel C, Kodama N, Weston C, Winters AJ, Keith H, Grice K, Leuning R, Farquhar GD (2007) δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct Plant Biol 34:692–706

    CAS  PubMed  Article  Google Scholar 

  37. Gleixner G, Schmidt H-L (1997) Carbon isotope effects on the fructose-1, 6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. J Biol Chem 272:5382–5387

    CAS  PubMed  Article  Google Scholar 

  38. Göttlicher S, Knohl A, Wanek W, Buchmann N, Richter A (2006) Short-term changes in carbon isotope composition of soluble carbohydrates and starch: from canopy leaves to the root system. Rapid Commun Mass Spectrom 20:653–660

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    CAS  Article  Google Scholar 

  40. Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RT, Sperry JS, McDowell NG (2020) Plant responses to rising vapor pressure deficit. New Phytol 226:1550–1566

    PubMed  Article  Google Scholar 

  41. Hanba YT, Mori S, Lei TT, Koike T, Wada E (1997) Variations in leaf δ13C along a vertical profile of irradiance in a temperate Japanese forest. Oecologia 110:253–261

    CAS  PubMed  Article  Google Scholar 

  42. Harwood KG, Gillon JS, Roberts A, Griffiths H (1999) Determinants of isotopic coupling of CO2 and wter vapour within a Quercus petraea forest canopy. Oecologia 119:109–119

    CAS  PubMed  Article  Google Scholar 

  43. Hultine K, Marshall J (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40

    CAS  PubMed  Article  Google Scholar 

  44. Irvine J, Law B, Anthoni P, Meinzer F (2002) Water limitations to carbon exchange in old-growth and young ponderosa pine stands. Tree Physiol 22:189–196

    CAS  PubMed  Article  Google Scholar 

  45. Irvine J, Law B, Kurpius M, Anthoni P, Moore D, Schwarz P (2004) Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiol 24:753–763

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WT, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  47. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Kumagai T, Ichie T, Yoshimura M, Yamashita M, Kenzo T, Saitoh TM, Ohashi M, Suzuki M, Koike T, Komatsu H (2006) Modeling CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf‐level physiological parameters and leaf area densities. J. Geophys. Res., 111, D10107, https://doi.org/10.1029/2005JD006676.

  49. Lavergne A, Graven H, De Kauwe MG, Keenan TF, Medlyn BE, Prentice IC (2019) Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Global Change Biol 25:2242–2257

    Google Scholar 

  50. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    CAS  PubMed  Article  Google Scholar 

  51. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Le Roux X, Bariac T, Sinoquet H, Genty B, Piel C, Mariotti A, Girardin C, Richard P (2001) Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an isolated tree crown. Plant Cell Environ 24:1021–1032

    Article  Google Scholar 

  53. Li W, Hartmann H, Adams HD, Zhang H, Jin C, Zhao C, Guan D, Wang A, Yuan F, Wu J (2018) The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol 38:1706–1723

    CAS  PubMed  Google Scholar 

  54. Livingston N, Whitehead D, Kelliher F, Wang YP, Grace J, Walcroft A, Byers J, McSeveny T, Millard P (1998) Nitrogen allocation and carbon isotope fractionation in relation to intercepted radiation and position in a young Pinus radiata D. Don tree Plant Cell Environ 21:795–803

    CAS  Article  Google Scholar 

  55. Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y (2020) Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Global Change Biol 26:4538–4558

    Article  Google Scholar 

  56. Marshall JD, Linder S (2013) Mineral nutrition and elevated [CO2] interact to modify δ13C, an index of gas exchange, in Norway spruce. Tree Physiol 33:1132–1144

    CAS  PubMed  Article  Google Scholar 

  57. Marshall JD, Monserud RA (2003) Foliage height influences specific leaf area of three conifer species. Can J For Res 33:164–170

    Article  Google Scholar 

  58. Martínez-Vilalta J, Garcia-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40:962–976

    PubMed  Article  CAS  Google Scholar 

  59. McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, Ogle K, Poulter B, Pugh TAM, Seidl R, Turner MG, Uriarte M, Walker AP, Xu C (2020) Pervasive shifts in forest dynamics in a changing world. Science 368:eaaz9463

    CAS  PubMed  Article  Google Scholar 

  60. McDowell NG, Bond BJ, Dickman LT, Ryan MG, Whitehead D (2011) Relationships between tree height and carbon isotope discrimination. In: Meinzer F, Dawson T, Lachenbruch B (eds) Size-and age-related changes in tree structure and function. Springer, New York, pp 255–286

    Google Scholar 

  61. McDowell NG, Licata J, Bond BJ (2005) Environmental sensitivity of gas exchange in different-sized trees. Oecologia 145:9

    PubMed  Article  Google Scholar 

  62. McDowell NG, Phillips N, Lunch C, Bond BJ, Ryan MG (2002) An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiol 22:763–774

    CAS  PubMed  Article  Google Scholar 

  63. Mcdowell NG, Williams A, Xu C, Pockman W, Dickman L, Sevanto S, Pangle R, Limousin J, Plaut J, Mackay D (2016) Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat Clim Change 6:295–300

    Article  Google Scholar 

  64. Monti A, Brugnoli E, Scartazza A, Amaducci M (2006) The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J Exp Bot 57:1253–1262

    CAS  PubMed  Article  Google Scholar 

  65. Morales F, Pavlovič A, Abadía A, Abadía J (2018) Photosynthesis in poor nutrient soils, in compacted soils, and under drought. In: Adams Iii WW, Terashima I (eds) The leaf: a platform for performing photosynthesis. Springer International Publishing, Berlin, pp 371–399

    Google Scholar 

  66. National Centers for Environmental Information (National Oceanic and Atmospheric Administration) (2020) Monthly precipitation in 2004. https://www.ncdc.noaa.gov/. Accessed 20 July 2020

  67. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    CAS  PubMed  Article  Google Scholar 

  68. Pangle R, Kavanagh K, Duursma R (2015) Decline in canopy gas exchange with increasing tree height, atmospheric evaporative demand, and seasonal drought in co-occurring inland Pacific Northwest conifer species. Can J For Res 45:1086–1101

    CAS  Article  Google Scholar 

  69. Peichl M, Arain MA (2007) Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253:68–80

    Article  Google Scholar 

  70. Pflug EE, Buchmann N, Siegwolf RTW, Schaub M, Rigling A, Arend M (2018) Resilient leaf physiological response of European Beech (Fagus sylvatica L.) to Summer Drought and Drought Release. Front. Plant Sci. 9:187. https://doi.org/10.3389/fpls.2018.00187

  71. Phillips N, Bond BJ, McDowell NG, Ryan MG (2002) Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. Tree Physiol 22:205–211

    PubMed  Article  PubMed Central  Google Scholar 

  72. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 1 Aug 2018

  73. Restaino CM, Peterson DL, Littell J (2016) Increased water deficit decreases Douglas fir growth throughout western US forests. Proc Natl Acad Sci 113:9557–9562

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. Accessed 1 Dec 2016

  75. Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    PubMed  Article  PubMed Central  Google Scholar 

  76. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  77. Saldarriaga JG, Luxmoore RJ (1991) Solar energy conversion efficiencies during succession of a tropical rain forest in Amazonia. J Trop Ecol 7:233–242

    Article  Google Scholar 

  78. Sanginés de Cárcer P, Vitasse Y, Peñuelas J, Jassey VE, Buttler A, Signarbieux C (2018) Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob Change Biol 24:1108–1122

    Article  Google Scholar 

  79. Scartazza A, Lauteri M, Guido M, Brugnoli E (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Funct Plant Biol 25:489–498

    CAS  Article  Google Scholar 

  80. Scartazza A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E (2004) Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140:340–351

    PubMed  Article  Google Scholar 

  81. Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441

    PubMed  Article  Google Scholar 

  82. Sendall KM, Reich PB (2013) Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree Physiol 33:713–729

    CAS  PubMed  Article  Google Scholar 

  83. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D (2007) Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–1637

    PubMed  Article  Google Scholar 

  84. Skov KR, Kolb TE, Wallin KF (2004) Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. For Sci 50:81–91

    Google Scholar 

  85. Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology. Wiley, New York

    Google Scholar 

  86. Swidrak I, Schuster R, Oberhuber W (2013) Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought. Flora 208:609–617

    PubMed Central  Article  PubMed  Google Scholar 

  87. Tang J, Luyssaert S, Richardson AD, Kutsch W, Janssens IA (2014) Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc Natl Acad Sci USA 111:8856–8860

    CAS  PubMed  Article  Google Scholar 

  88. Ubierna N, Marshall JD (2011) Estimation of canopy average mesophyll conductance using δ13C of phloem contents. Plant Cell Environ 34:1521–1535

    CAS  PubMed  Article  Google Scholar 

  89. van de Weg MJ, Meir P, Grace J, Ramos GD (2012) Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:23–34

    PubMed  Article  Google Scholar 

  90. Vitousek PM, Field CB, Matson PA (1990) Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84:362–370

    PubMed  Article  Google Scholar 

  91. Wanek W, Heintel S, Richter A (2001) Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis. Rapid Commun Mass Spectrom 15:1136–1140

    CAS  PubMed  Article  Google Scholar 

  92. Warren CR (2008a) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    CAS  PubMed  Article  Google Scholar 

  93. Warren C (2008b) Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol 28:11–19

    CAS  PubMed  Article  Google Scholar 

  94. Warren C, Ethier G, Livingston N, Grant N, Turpin D, Harrison D, Black T (2003) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ 26:1215–1227

    CAS  Article  Google Scholar 

  95. Werner C, Gessler A (2011) Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: a review of dynamics and mechanisms. Biogeosciences Discussions. 8(2):2437–2459

  96. Western Regional Climate Center (2020) 30-year average monthly precipitation between 1971 and 2000. http://www.wrcc.dri.edu/index.html. Accessed 20 July 2020.

  97. Woodruff D, Meinzer F, Lachenbruch B, Johnson D (2009) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29:261–272

    CAS  PubMed  Article  Google Scholar 

  98. Yang J, Duursma RA, De Kauwe MG, Kumarathunge D, Jiang M, Mahmud K, Gimeno TE, Crous KY, Ellsworth DS, Peters J (2019) Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit. Tree Physiol 39:1961–1974

    CAS  PubMed  Article  Google Scholar 

  99. Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Priest River Experimental Forest for allowing us to establish our research sites and for use of their facilities. We are indebted to our sawyer Dana Townsend and to Benjamin Miller for assistance in processing foliar samples. We also thank Bob Brander and Idaho Stable Isotopes Laboratory, as well as Dr. Ray Lee and his lab at Washington State University for isotopic sample analysis. Thanks to John Marshall, Jodi Johnson-Maynard, and Alan Black for providing thoughtful comments on this manuscript, and three anonymous reviewers whose suggestions greatly improved the article.

Funding

This research was funded with a grant from McIntire-Stennis Cooperative Forestry Research Program (Grant number: 0199175: Seasonal changes in water use across forest stands of differing age and height at the Priest River Experimental Forest) awarded to KLK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akihiro Koyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Gessler.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 KB)

Supplementary file2 (DOCX 233 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koyama, A., Schotzko, A.D., Schedlbauer, J.L. et al. Can variation in canopy \(\delta\)13C be attributed to changes in tree height? An investigation of three conifer species. Trees (2021). https://doi.org/10.1007/s00468-020-02069-5

Download citation

Keywords

  • Hydraulic limitation theory
  • Conifers
  • Foliar \(\delta\) 13C
  • N area
  • Sequential ANOVAs