Skip to main content
Log in

Lianas research in the Neotropics: overview, interaction with trees, and future perspectives

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A systematic review (1950–2018) summarizes the research on woody lianas and their interaction with trees in the Neotropics. We identify knowledge gaps, propose new directions for future studies and discuss the control, management, and conservation of lianas.

Abstract

Lianas are key components of species composition, structure and dynamics of tropical forests. Current global warming scenario, however, are favoring increases in the abundance and density of lianas in tropical forests, affecting tree growth, fertility, and the number of tree injuries, therefore, increasing tree mortality over time. Here, we present a systematic review of studies on Neotropical lianas and its relation with trees, aiming to (1) establish the current state of ecological research, identifying knowledge gaps and propose new directions and perspectives for future studies; (2) offer baseline knowledge to support the control, management and conservation of lianas. We surveyed the literature on lianas (woody climbers) since 1900 to 2018 retaining 427 papers. We organized the literature by country, vegetation type, topic addressed and whether the study focused exclusively on lianas or lianas and trees. Our review demonstrated the importance of lianas in tropical forests, and the scarcity of studies on woody savannas and especially extremely dry vegetations as the Caatinga seasonally dry forests and xeric shrublands. Regardless of their remarkable importance and their contribution for diversity, biomass and carbon flux, lianas are rarely included in global vegetation models and have been overlooked in restoration, control, and management programs. We must consider the relevance of lianas in maintaining diversity and microclimate, and as resources for native animals, such as pollinators, herbivores, and seed dispersers, as well as for traditional human communities. Research on ecophysiology and functional spectral traits, and management of lianas are among the key areas in the Anthropocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addo-Fordjour P, Rahmad ZB, Shahrul SAM, Ashraf M (2016) Impacts of forest management on liana diversity and community structure in a tropical forest in Ghana: implications for conservation. J For Res 27:147–153

    Google Scholar 

  • Aguirre-Morales AC, Bonilla-Morales MM, Caetano CM (2016) Passiflora franciscoi, a new species of Passiflora subgenus Astrophea (Passiflora) from Colombia. Phytotaxa 252:56–62

    Google Scholar 

  • Alcantara S, Oliveira FB, Lohmann LG (2013) Phenotypic integration in flowers of neotropical lianas: diversification of form with stasis of underlying patterns. J Evol Biol 26:2283–2296

    CAS  PubMed  Google Scholar 

  • Álvarez-Casino L, Schnitzer SA, Reid JP, Powers JS (2015) Liana competition with tropical trees varies seasonally but not with tree species identity. Ecology 96:39–45

    Google Scholar 

  • Anderson C (2018) Revision of Mezia (Malpighiaceae). Edinb J Bot 75:21–376

    Google Scholar 

  • Andrade JL, Meinzer FC, Goldstein G, Schnitzer SA (2005) Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees 19:282–289

    Google Scholar 

  • Araújo D, Alves M (2010) Climbing plants of a fragmented area of lowland Atlantic Forest, Igarassu, Pernambuco (northeastern Brazil). Phytotaxa 8:1–24

    Google Scholar 

  • Arenas P, Gilberti GC (1987) The ethnobotany of Odontocarya asarifolia (Menispermaceae), an edible plant from the Chaco. Econ Bot 41:361–369

    Google Scholar 

  • Armenteras D, Espelta JM, Rodríguez N, Renata J (2017) Deforestation dynamics and drivers in different forest types in Latin America: 3 decades of studies (1980–2010). Glob Environ Change 46:139–147

    Google Scholar 

  • Asner GP, Martin RE (2012) Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecol Lett 15:1001–1007

    PubMed  Google Scholar 

  • Avalos G, Mulkey S (2014) Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment. Am J Bot 101:2068–2078

    Google Scholar 

  • Avalos G, Mulkey SS, Kitajima K (1999) Leaf optical properties of trees and lianas in the outer canopy of a tropical dry forest. Biotropica 31:517–520

    Google Scholar 

  • Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer D, Carvalho O (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manag 261:68–77

    Google Scholar 

  • Ball A, Sanchez-Azofeifa A, Portillo-Quintero C, Rivard B, Castro-Contreras S, Fernandes G (2015) Patterns of leaf biochemical and structural properties of cerrado life forms: Implications for remote sensing. PLoS ONE 10(2):e0117659

    PubMed  PubMed Central  Google Scholar 

  • Barry KE, Schnitzer SA, van Breugel M, Hall JS (2015) Rapid liana colonization along a secondary forest chronosequence. Biotropica 47:672–680

    Google Scholar 

  • Brandes AFN, Lisi CS, Barros CF (2011) Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees 25:133–144

    Google Scholar 

  • Broadbent EN, Zarin DJ, Asner GP, Peña-Claros M, Cooper A, Littell R (2006) Recovery of forest structure and spectral properties after selective logging in lowland Bolivia. Ecol Appl 16:1148–1163

    PubMed  Google Scholar 

  • Burnham RJ (2004) Alpha and beta diversity of Lianas in Yasuní, Ecuador. For Ecol Manag 190:43–55

    Google Scholar 

  • Cai ZQ, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161:25–33

    PubMed  PubMed Central  Google Scholar 

  • Camargo RA, Tozzi AMGA (2014) A new species of Deguelia (Leguminosae, Papilionoideae) from the Brazilian Amazon Basin. Phytotaxa 184:160–164

    Google Scholar 

  • Campanello PI, Garibaldi JF, Gatti MG, Goldstein G (2007) Lianas in a subtropical Atlantic Forest: host preference and tree growth. For Ecol Manag 242:250–259

    Google Scholar 

  • Campbell MJ, Edwards W, Magrach A, Alamgir M, Porolak G, Mohandass D, Laurance WF (2018) Edge disturbance drives liana abundance increases and alteration of liana–host tree interactions in tropical forest fragments. Ecol Evol 8:4237–4251

    PubMed  PubMed Central  Google Scholar 

  • Carvalho ECD, Martins FR, Oliveira RS, Soares AA, Araújo FS (2016) Why is liana abundance low in semiarid climates? Austral Ecol 41:559–571

    Google Scholar 

  • Castellanos AE, Durán R, Guzman S, Briones O, Faria M (1992) Three-dimensional space utilization of lianas: a methodology. Biotropica 24:396–401

    Google Scholar 

  • Castro-Esau KL, Sánchez-Azofeifa GA, Caelli T (2004) Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sens Environ 90:353–372

    Google Scholar 

  • César RG, Holl Kd, Girão VJ, Mello FNA, Vidal E, Alves MC, Brancalion PHS (2016) Evaluating climber cutting as a strategy to restore degraded tropical forest. Biol Conserv 201:309–313

    Google Scholar 

  • Chaves OM, Arroyo-Rodríguez V, Martínez-Ramos M, Stoner KE (2015) Primate extirpation from rainforest fragments does not appear to influence seedling recruitment. Am J Primatol 77:468–478

    PubMed  Google Scholar 

  • Chiarello AG (1998) Diet of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). J Zool 246:11–19

    Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759

    Google Scholar 

  • Collins CG, Wright SJ, Wurzburger N (2016) Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 180:1037–1047

    PubMed  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Google Scholar 

  • Cusack DF, Karpman J, Ashdown D, Cao Q, Ciochina M, Halterman S, Lydon S, Neupane A (2016) Global change effects on humid tropical forests: evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev Geophys 54:523–610

    Google Scholar 

  • Dalling JW, Schnitzer SA, Baldeck C, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP (2012) Resource-based habitat associations in a neotropical liana community. J Ecol 100:1174–1182

    Google Scholar 

  • Darwin C (1865) On the movements and habits of climbing plants. Bot J Linn Soc 9:33–34

    Google Scholar 

  • Deurwaerder H, Hervé-Fernández P, Stahl C, Burban B, Petronelli P, Hoffman B, Bonal D, Boeckx P, Verbeeck H (2018) Liana and tree below-ground water competition—evidence for water resource partitioning during the dry season. Tree Physiol 38:1071–1083

    PubMed  PubMed Central  Google Scholar 

  • Devisscher T, Malhi Y, Landívar VDR, Oliveras I (2016) Understanding ecological transitions under recurrent wildfire: a case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. For Ecol Manag 360:273–286

    Google Scholar 

  • DeWalt SJ, Bourdy G, Michel LRC, Quenevo C (1999) Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ Bot 53:237–260

    Google Scholar 

  • DeWalt SJ, Schinitzer SA, Chave J, Bonger F, Burnham RJ, Cai Z, Chuyong G, Clarck DB, Ewaango CEN, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manríques G, Ickes K, Kenfack D, Macía MJ, Makana J, Martínez-Ramos M, Mascaro J, Moses S, Muller-Landau HC, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos H, Thomas D (2010) Annual rainfall and seasonality predict pan-tropical patterns of Liana density and basal area. Wildl Conserv 42:309–317

    Google Scholar 

  • DeWalt SJ, Schnitzer SA, Alves LF, Bongers F, Burnham RJ, Cai Z, Carson WP, Chave J, Chuyong GB, Costa FRC, Ewango CEN, Gallagher RV, Gerwing JJ, Amezcua EG, Hart T, Ibarra-Manríquez G, Ickes K, Kenfack D, Letcher SG, Macía MJ, Makana J-R, Malizia A, Martínez-Ramos M, Mascaro J, Muthumperumal C, Muthuramkumar S, Nogueira A, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos HG, Sridhar Reddy M, Sainge MN, Thomas D, Melis VJ (2015) Biogeographical patterns of liana abundance and diversity. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley, Oxford, pp 131–146

    Google Scholar 

  • Dunn JC, Asensio N, Arroyo-Rodríguez V, Schnitzer S, Cristóbal-Azkarate J (2012) The ranging costs of a fallback food: liana consumption supplements diet but increases foraging effort in Howler monkeys. Biotropica 44:705–714

    Google Scholar 

  • Durán SM, Gianoli E (2013) Carbon stocks in tropical forests decrease with liana density. Glob Change Biol 9:1–4

    Google Scholar 

  • Durán SM, Sánchez-Azofeifa GA, Rios RS, Gianoli E (2015) The relative importance of climate, stand variables and liana abundance for carbon storage in tropical forests. Glob Ecol Biogeogr 24:939–949

    Google Scholar 

  • Durigon J, Miotto STS, Gianoli E (2014) Distribution and traits of climbing plants in subtropical and temperate South America. J Veg Sci 25:1484–1492

    Google Scholar 

  • Eamus D (1991) The interaction of rising CO2 and temperature with water use efficiency. Plant Cell Environ 14:843–852

    Google Scholar 

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Change Biol 18:435–447

    Google Scholar 

  • Emmons LH, Gentry AH (1983) Tropical forest structure and the distribution of gliding and prehensile tailed vertebrates. Am Nat 121:513–524

    Google Scholar 

  • Fonseca MG, Vidal E, Santos FAM (2009) Intraspecific variation in the fruiting of an Amazonian timber tree: implications for management. Biotropica 41:179–185

    Google Scholar 

  • Fonseca LHM, Zuntini AR, Lohmann LG (2016) Two new species of Adenocalymma (Bignonieae, Bignoniaceae) from the Atlantic Forest of Brazil. Phytotaxa 284:263–272

    Google Scholar 

  • Foster JR, Townsend PA, Zganjar CE (2008) Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens Environ 112:2104–2117

    Google Scholar 

  • Franci LC, Nabe-Nielsen J, Svenning JC, Martins FR (2016) Short-term spatial variation in the demography of a common Neotropical liana is shaped by tree community structure and light availability. Plant Ecol 217:1273–1290

    Google Scholar 

  • Galetti M, Pedroni F, Morellato LPC (1994) Diet of the Brown Howler Monkey Alouatta-Fusca in a Forest Fragment in Southeastern Brazil. Mammalia 58:111–118

    Google Scholar 

  • Garbin ML, Sánchez-Tapia A, Carrijo TT, Sansevero JBB, Scarano FR (2014) Functional traits behind the association between climbers and subordinate woody species. J Veg Sci 25:715–723

    Google Scholar 

  • Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68

    Google Scholar 

  • Gentry AH (1985) An ecotaxonomic survey of Panamanian lianas. In: D'Arcy WG, Correa MD (eds) The Botany and Natural History of Panama. Missouri Botanical Garden, St, Louis Missouri, pp 29–42

    Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3–49

    Google Scholar 

  • Gentry AH (1992) A synopsis of Bignoniaceae ethnobotany and economic botany. Ann Mo Bot Gard 79:53–64

    Google Scholar 

  • Gentry AH (1995) Diversity and floristic composition of neotropical dry forest. In: Bullock SH, Mooney HA (eds) Seasonally dry tropical forest. Standford University, California, pp 146–194

    Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a contribution tropical rain forest. Biotropica 19:149–156

    Google Scholar 

  • Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. For Ecol Manag 157:131–141

    Google Scholar 

  • Gerwing JJ, Uhl C (2002) Pre-logging liana cutting reduces liana regeneration in logging gaps in the Eastern Brazilian Amazon. Conserv Biol 12:1642–1651

    Google Scholar 

  • Gerwing JJ, Vidal E (2002) Changes in liana abundance and species diversity 8 years after liana cutting and logging in an eastern Amazonian forest. Conserv Biol 16:544–548

    Google Scholar 

  • Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, Dewalt SJ, Ewango CEN, Foster R, Kenfack D, Martinez-Ramos M, Parren M, Parthasarathy N, Perez-Salicrup DR, Putz FE, Thomas DW (2006) A standard protocol for lianas censuses. Biotropica 38:256–261

    Google Scholar 

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Change Biol 8:1109–1117

    Google Scholar 

  • Guadagnin DL, Gravato IC (2013) Ethnobotany, availability, and use of lianas by the Kaingang people in suburban forests in southern Brazil. Econ Bot 67:350–362

    Google Scholar 

  • Hergaty EE (1991) Vine-host interactions. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 357–375

    Google Scholar 

  • Hora RC, Primavesi O, Soares JJ (2008) Contribuição das folhas de lianas na produção de serapilheira em um fragmento de floresta estacional semidecidual em São Carlos, SP. Braz J Bot 31:277–285

    Google Scholar 

  • Ibarra-Manríquez G, Martínez-Ramos M (2002) Landscape variation of liana communities in a Neotropical rain forest. Plant Ecol 160:91–112

    Google Scholar 

  • Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887

    Google Scholar 

  • IPCC - Intergovernmental Panel On Climate Change. International Panel on Climate Change. Climate Change 2014: Mitigation of climate change. Working group III contribuition to the fifth asessment repport of the Intergovernmental Panel on Climate Change. United States of America, (2014). Disponível em. http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf. Accessed 9 July 2018

  • Janzen DH (1971) Escape of juvenile Dioclea megacarpa (Leguminosae) vines from predators in a deciduous tropical forest. Am Nat 105:97–112

    Google Scholar 

  • Joetzjer E, Douville H, Delire C, Ciais P, Decharme B, Tyteca S (2013) Hydrologic benchmarking of meteorological drought indices at interannual to climate change timescales: a case study over the Amazon and Mississippi river basins. Hydrol Earth Syst Sci 17:4885–4895

    Google Scholar 

  • Johnson DM, Domec JC, Woodruff DR, McCulloh KA, Meinzer FC (2013) Contrasting hydraulic strategies in two tropical lianas and their host trees. Am J Bot 100:374–383

    PubMed  Google Scholar 

  • Kainer KA, Wadt LHO, Gomes-Silva DAP, Capanu M (2006) Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown attributes. J Trop Ecol 22:147–154

    Google Scholar 

  • Kainer KA, Wadt LHO, Staudhammer CL (2007) Explaining variation in Brazil nut fruit production. For Ecol Manag 250:244–255

    Google Scholar 

  • Kalácska M, Bohlman S, Sanchez-Azofeifa GA, Castro-Esau K, Caelli T (2007) Hyperspectral discrimination of tropical dry forest lianas and trees: comparative data reduction approaches at the leaf and canopy levels. Remote Sens Environ 109:406–415

    Google Scholar 

  • Laurance WF, Peréz-Salicrup D, Dalemônica P, Fearnside PM, D’angelo S, Jerozolinski A, Pohl L, Levejoy TE, (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116

    Google Scholar 

  • Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG (2014) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:1604–1611

    PubMed  Google Scholar 

  • Ledo A, Schnitzer SA (2014) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95:2169–2178

    PubMed  Google Scholar 

  • Ledo A, Illian JB, Schnitzer SA, Wright SJ, Dalling JW, Burslem DFRP (2016) Lianas and soil nutrients predict fine-scale distribution of above-ground biomass in a tropical moist forest. J Ecol 104:1819–1828

    CAS  Google Scholar 

  • Li G, Lu D, Moran E, Hetrick S (2011) Land-cover classification in a moist tropical region of Brazil with landsat thematic mapper imagery. Int J Remote Sens 32:8207–8230

    PubMed  PubMed Central  Google Scholar 

  • Lima AC, Pace MR, Angyalossy V (2010) Seasonality and growth rings in lianas of Bignoniaceae. Trees 24:1045–1060

    Google Scholar 

  • Lohmann LG (2006) Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am J Bot 93:304–318

    CAS  PubMed  Google Scholar 

  • Maréchaux I, Bartlett MK, Iribar A, Sack L, Chave J (2017) Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biol Lett 13:20160819

    PubMed  PubMed Central  Google Scholar 

  • Marvin DC, Winter K, Burnham RJ, Schnitzer SA (2015) No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees. Glob Change Biol 21:2055–2069

    Google Scholar 

  • Marvin DC, Asner GP, Schnitzer SA (2016) Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy. Remote Sens Environ 176:98–106

    Google Scholar 

  • Mendoza I, Peres CA, Morellato LPC (2017) Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative Neotropical review. Glob Planet Change 148:227–241

    Google Scholar 

  • Milward-de-Azevedo MA, Souza FC, Gonçalves-Esteves V, Kinoshita LS (2014) Palinotaxonomy of passiflora section Xerogona (Passifloraceae). Phytotaxa 159:1–10

    Google Scholar 

  • Moorthy SMK, Calders K, Brugnera MP, Schnitzer SA, Verbeeck H (2018) Terrestrial laser scanning to detect liana impact on forest structure. Remote Sens 10:810

    Google Scholar 

  • Nabe-Nielsen J (2001) Diversity and distribution of lianas in a Neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19

    Google Scholar 

  • NasMorellato LPC, Leitao-Filho HF (1996) Reproductive phenology of climbers is southeastern Brazilian forest. Biotropica 28:180–191

    Google Scholar 

  • Nelson BW (1994) Natural forest disturbance and changes in the Brazilian Amazon. Remote Sens 10:105–125

    Google Scholar 

  • Odegaard F (2000) The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J Biogeogr 27:283–296

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bio Sci 51:933

    Google Scholar 

  • Pace MR, Alcantara S, Lohmann LG, Angyalossy V (2015) Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae). Ann Bot 116:333–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pazy Niño G, Balslev H, Valencia R (1995) Useful lianas of the Siona-Secoya Indians from Amazonian Ecuador. Econ Bot 49:269–275

    Google Scholar 

  • Pérez-Salicrup DR, Barker MG (2000) Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia 124:469–475

    PubMed  Google Scholar 

  • Pérez-Salicrup DR, Sork VL, Putz FE (2001) Lianas and trees in a Liana forest of Amazonian Bolivia. Biotropica 33:34–47

    Google Scholar 

  • Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot 47:33–43

    Google Scholar 

  • Phillips OL, Lewis SM (2014) Recent changes in tropical forest biomass and dynamics. In: Coomes DA, Burslem DFRP, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge, pp 77–108

    Google Scholar 

  • Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Cerón C, Di Flore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    CAS  PubMed  Google Scholar 

  • Phillips OL, Martínez RV, Mendoza AM, Baker TR, Vargas PN (2005) Large Lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258

    Google Scholar 

  • Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a sub humid tropical forest in eastern Bolivia. For Ecol Manag 116:247–252

    Google Scholar 

  • Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS (2018) Thinking about super-dominant populations of native species—examples from Brazil. Perspect Ecol Conser 16:74–82

    Google Scholar 

  • Plumier RPC (1693) Description des Plantes de l’Amérique, avec leurs figures. L’Imprimerie Royale, Paris

  • Pool A (2009) A review of the Genus Distictella (Bignoniaceae). Ann Mo Bot Gard 96:286–323

    Google Scholar 

  • Putz FE (1980) Lianas vs trees. Biotropica 12:224–225

    Google Scholar 

  • Putz FE (1984a) The natural history of lianas on Barro Colorado Island, Panamá. Ecology 65:1713–1724

    Google Scholar 

  • Putz FE (1984b) How trees avoid and shed lianas. Biotropica 16:19–23

    Google Scholar 

  • Putz FE (1991) Silvicultural effects of liana. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 493–501

    Google Scholar 

  • Putz FE, Chai P (1987) Ecological studies of lianas in Lambir National Park, Sarawak. J Ecol 75:523–531

    Google Scholar 

  • Putz FE, Mooney HA (1991) The Biology of Vines. (eds) Cambridge University Press, Cambridge

  • Reid JP, Schnitzer SA, Powers JS (2015) Short and long-term soil moisture effects of liana removal in a seasonally moist tropical forest. PLoS ONE 10:1–12

    Google Scholar 

  • Restom TG, Nepstad DC (2001) Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant Soil 236:155–163

    CAS  Google Scholar 

  • Restom TG, Nepstad DC (2004) Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. For Ecol Manag 190:109–118

    Google Scholar 

  • Rosell JA, Olson ME (2014) Do lianas really have wide vessels? Vessel diameter-stem length scaling in non-self-supporting plants. PPEES 16:288–295

    Google Scholar 

  • Sanches MC, Válio IFM (2002) Seedling growth of climbing species from a southeast Brazilian tropical forest. Plant Ecol 154:51–59

    Google Scholar 

  • Sánchez-Azofeifa GA, Castro-Esau K (2006) Canopy observations on the hyperspectral properties of a community of tropical dry forest lianas and their host trees. Int J Remote Sens 27:2101–2109

    Google Scholar 

  • Sánchez-Azofeifa GA, Kalácska M, Espírito-Santo MM, Fernandes GW, Schnitzer S (2009) Tropical dry forest succession and the contribution of lianas to wood area index (WAI). For Ecol Manag 258:941–948

    Google Scholar 

  • Sánchez-Azofeifa GA, Castro K, Wright SJ, Gamon J, Kalacska M, Rivard B, Schnitzer SA, Feng JL (2009) Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments. Remote Sens Environ 113:2076–2088

    Google Scholar 

  • Sánchez-Azofeifa GA, Guzmán-Quesada JA, Veja-Araya M, Campos-Vargas C, Durán SM, D’Souza N, Gianoli T, Portillo-Quintero C, Sharp I (2017) Can terrestrial laser scanners (TLSs) and hemispherical photographs predict tropical dry forest succession with liana abundance? Biogeosciences 14:977–988

    Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Change 1:304–307

    CAS  Google Scholar 

  • Schenck H (1892) Beiträge zur Biologie und Anatomie der Lianen im Besonderom de in Brasillien einheimischem arten. Beiträge zur Biologie der Lianen. In: Schimper AFW (ed) Botanishe Mittheilungen aus den Tropen. G. Fischer, Jena, pp 1–271

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276

    PubMed  Google Scholar 

  • Schnitzer SA (2015) Increasing liana abundance in neotropical forests: causes and consequences. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley Blackwell, Oxford, pp 451–464

    Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. TREE 17:223–230

    Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    PubMed  Google Scholar 

  • Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913–919

    Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857

    PubMed  Google Scholar 

  • Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125

    Google Scholar 

  • Schnitzer SA, DeWalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581–591

    Google Scholar 

  • Schnitzer SA, Rutishauser S, Aguilar S (2008) Supplemental protocol for liana censuses. For Ecol Manag 255:1044–1049

    Google Scholar 

  • Schnitzer SA, Arnold C, Fiard JP, Joseph P (2012a) Post-hurricane responses of climbers in a tropical mountain rain forest of martinique. Folia Geobot 47:277–291

    Google Scholar 

  • Schnitzer SA, Mangan SA, Dalling JW, Baldeck CA, Hubbell SP, Ledo A, Muller-Landau H, Tobin MF, Aguilar S, Brassfield D, Hernandez A, Lao S, Perez R, Valdes O, Yorke SR (2012b) Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 7:e52114. https://doi.org/10.1371/journal.pone.0052114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzer SA, van Der Heijden G, Mascaro J, Carson WP (2014) Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:3008–3017

    Google Scholar 

  • Schnitzer SA, Putz FE, Bongers F, Kroening K (2015) The past, present and potential future of liana ecology. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley Blackwell, Oxford, pp 1–9

    Google Scholar 

  • Schnitzer SA, van der Heijden GMF, Powers JS (2016) Reply to Verbeeck and Kearsley: addressing the challenges of including lianas in global vegetation models. PNAS 113:E5–E6

    CAS  PubMed  Google Scholar 

  • Scholander PF, Ruud B, Leivestad H (1957) The rise of sap in a tropical liana. Plant Physiol 32:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selaya NG, Anten NPR (2008) Differences in biomass allocation, light interception and mechanical stability between lianas and trees in early secondary tropical forest. Funct Ecol 22:30–39

    Google Scholar 

  • Sfair JC, Rochelle ALC, Rezende AA, Melis J, Burnham RJ, Weiser VL, Martins FR (2016) Liana avoidance strategies in trees: combined attributes increase efficiency. Trop Ecol 57:559–566

    Google Scholar 

  • Souza-Alves JP, Fontes IP, Chagas RRD, Ferrari SF (2011) Seasonal versatility in the feeding ecology of a group of titis (Callicebus coimbrai) in the northern Brazilian Atlantic Forest. Am J Primatol 73:1199–1209

    PubMed  Google Scholar 

  • Staudhammer CL, Wadt LHO, Kainer KA (2013) Tradeoffs in basal area growth and reproduction shift over the lifetime of a long-lived tropical species. Oecologia 173:45–57

    PubMed  Google Scholar 

  • Stewart TE, Schnitzer SA (2017) Blurred lines between competition and parasitism. Biotropica 49:433–438

    Google Scholar 

  • Tamaio N (2011) Caracterização anatômica da madeira de lianas de Sapindaceae utilizadas comercialmente em São Paulo-SP. Cerne 17:533–540

    Google Scholar 

  • Tamaio N, Neves MF, Brandes AFN, Vieira RC (2011) Quantitative analyses establish the central vascular cylinder as the standard for wood-anatomy studies in lianas having compound stems (Paullinieae: Sapindaceae). Flora 206:987–996

    Google Scholar 

  • Tang Y, Kitching RL, Cao M (2012) Lianas as structural parasites: a re-evaluation. Chin Sci Bull 57:307–312

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tobin MF, Wright AJ, Mangan SA, Schnitzer SA (2012) Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere 3:1–11

    Google Scholar 

  • Trethowan LA, Clark RP, Mackinder BA (2015) A synopsis of the neotropical genus Schnella (Cercideae: Caesalpinioideae: Leguminosae) including 12 new combinations. Phytotaxa 204:237–252

    Google Scholar 

  • Tymen B, Réjou-Méchain M, Dalling JW, Fauset S, Feldpausch TR, Norden N, Phillips OL, Turner BL, Viers J, Chave J (2016) Evidence for arrested succession in a liana-infested Amazonian forest. J Ecol 104:149–159

    CAS  Google Scholar 

  • Udulutsch RG, Assis MA, Dias P (2009) Adenocalymma calcareum sp. nov. (Bignoniaceae) from Brazilian Amazonia and a key to the Amazonian species of the genus. Nord J Bot 27:449–453

    Google Scholar 

  • van der Heijden GMF, Feldpausch TR, Herrero AF, van der Velden NK, Phillips OL (2010) Calibrating the liana crown occupancy index in Amazonian forests. For Ecol Manag 260:549–555

    Google Scholar 

  • van der Heijden GMF, Powers JS, Schnitzer SA (2015) Lianas reduce carbon accumulation and storage in tropical forests. Proc Natl Acad Sci 112:13267–13271

    PubMed  Google Scholar 

  • Vargas BC, Grombone-Guaratini MT, Morellato LPC (2020) Lianas research in the Neotropics: data from 1950 to 2018. 10.5281/zenodo.4050476

  • Venturoli F, Carvalho FA, Melo e Silva Neto C, Moraes DC, Martins TO, Souza DM (2015) Forest Management in the Cerrado biome: an option to conserve and to profit. Sci For 43:617–626

    Google Scholar 

  • Villagra BLP, Romaniuc-Neto S (2011) Plantas trepadeiras do Parque Estadual das Fontes do Ipiranga. Hoehnea 38:325–384

    Google Scholar 

  • Vleut I, Pérez-Salicrup DR (2005) Lianas and their supporting plants in the understory at Los Tuxtlas, Mexico. J Trop Ecol 21:577–580

    Google Scholar 

  • Wright SJ, Calderón O, Hernandéz A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484–489

    Google Scholar 

  • Yorke SR, Schnitzer SA, Mascaro J, Letcher SG, Carson WP (2013) Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45:317–324

    Google Scholar 

  • Zuntini A, Lohmann L (2014) Synopsis of Martinella Baill. (Bignonieae, Bignoniaceae), with the description of a new species from the Atlantic Forest of Brazil. Phytokeys 37:15–24

    Google Scholar 

Download references

Funding

Our research was supported by FAPESP, the São Paulo Research Foundation (Grants #2013/50155-0 FAPESP-Microsoft Research, #2010/51307-0 FAPESP-VALE-FAPEMIG and grant #2009/54208-6 EMU). BCV received a doctoral fellowship and additional financial support from CAPES—Coordination for the Improvement of Higher Education Personnel (CAPES)—Finance Code 001; LPCM receives a Research Productivity Fellowship from CNPq (grant #428055/2018-4), the National Council for Scientific and Technological Development, and is a member of National Institute for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation funded by MCTIC/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Betânia da Cunha Vargas or Leonor Patricia Cerdeira Morellato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Research does not involve human participants and/or animal.

Ethical approval

The manuscript is not submitted to other journal for simultaneous consideration. The work is original and have not been published elsewhere in any form or language. Authors adhere to discipline-specific rules for acquiring, selecting and processing data.

Additional information

Communicated by M. Buckeridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha Vargas, B., Grombone-Guaratini, M.T. & Morellato, L.P.C. Lianas research in the Neotropics: overview, interaction with trees, and future perspectives. Trees 35, 333–345 (2021). https://doi.org/10.1007/s00468-020-02056-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-02056-w

Keywords

Navigation