Climate signals in tree rings of Paubrasilia echinata (Leguminosae-Caesalpinioidea) from the Atlantic Forest of Brazil

Abstract

Key message

Tree-ring chronologies were built for wild and cultivated Paubrasilia echinata, a presently endangered species. Significantly P. echinata showed measurably different growth patterns related to the environment where wild and cultivated trees have grown.

Abstract

Paubrasilia echinata once grew so abundantly along the tropical coast of South America that the names given to the tree by early Europeans colonists—Bresil, Brasil, Brazil—became synonymous with an entire geography. Today, despite restoration and protection efforts, the species remains under threat of extinction throughout Brazil’s Atlantic Forest. Considering the past overexploitation and ongoing climate changes, the future of P. echinata significantly depends upon human understanding of the species’ growth dynamics and growth-climate relations. Therefore, this work aims to: (1) demonstrate the feasibility of calendar dating P. echinata tree rings; (2) build chronologies by analyzing its growth rings; and (3) establish with detail the specific influence of climate on annual radial xylem production. Differences in vessel and axial parenchyma frequency, local distended rays and marginal parenchyma were the wood anatomical markers used to distinguish boundaries between adjacent rings so that dendrochronological methods could be applied. For climate-growth responses, we developed tree-ring width chronologies from wild and cultivated trees. Results revealed that seasonal rainfall is the most important factor influencing P. echinata growth. More specifically, positive correlation was observed between the tree-ring chronology of wild trees and precipitation during the rainy months of the growing season, while the tree-ring chronology of cultivated trees correlated negatively with precipitation in months before the growth period. Wild trees showed increment growth rates lower than planted trees. Rainfall’s observed effect on P. echinata is, of course, not surprising. However, our results contribute a detailed quantitative record of that effect, which expands the body of ecological knowledge regarding P. echinata necessary for ongoing conservation efforts under current and future human-caused climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alves ES, Angyalossy V, Amano E (2008) A madeira e a casca de árvore de pau-brasil. In: Figueiredo-Ribeiro RCL, Barbedo CJ, Alves ES, Domingos M, Braga MR (eds) Pau-brasil, da semente à madeira: Conhecer para conservar. Instituto de Botânica/SMA, São Paulo, pp 133–143

    Google Scholar 

  2. Amano E (2007) Pau-brasil, madeira e casca: formação, desenvolvimento e estrutura. Ph.D. Dissertation. University of São Paulo

  3. Andreacci F, Botosso P, Galvão F (2014) Sinais Climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de florestas ombrófilas do sul do Brasil. FLORESTA 44:323–332

    Article  Google Scholar 

  4. Angyalossy V, Amano E, Alves ES (2005) Madeiras utilizadas na fabricação de arcos para instrumentos de corda: aspectos anatômicos. Acta Bot Bras 19:819–834. https://doi.org/10.1590/S0102-33062005000400018

    Article  Google Scholar 

  5. Araujo DSD (1997) Cabo Frio region, southeastern Brazil. In: Davis SD, Heywood VH, Herrera-Macbryde O, Villa-Lobos J, Hamilton AC (eds). Centers of plant diversity: a guide and strategy for their conservation. The Americas. WWF/IUCN, Washington, pp 373–375

  6. Bediaga B, Drummond RP (2007) Cronologia Jardim Botânico do Rio de Janeiro. Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  7. Béllard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386. https://doi.org/10.1111/geb.12228

    Article  Google Scholar 

  8. Brandes AFN, Lisi CS, Barros CF (2011) Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees 25:133–144. https://doi.org/10.1007/s00468-010-0529-3

    Article  Google Scholar 

  9. Brandes AFN, Lisi CS, Silva LDSAB, Rajput KS, Barros CF (2015) Seasonal cambial activity and wood formation in trees and lianas of Leguminosae growing in the Atlantic Forest: a comparative study. Botany 93:211–220. https://doi.org/10.1139/cjb-2014-0198

    Article  Google Scholar 

  10. Brasil (2014) Portaria N° 443, de 17 de dezembro de 2014. Diário Oficial da União 245:110–121

  11. Brienen RJW, Lebrija-Trejos E, Zuidema PA, Martínez-Ramos M (2010) Climate–growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012

    Article  Google Scholar 

  12. Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago L (eds) Tropical tree physiology. Springer, Cham, pp 439–461

    Google Scholar 

  13. Buckeridge MS (2008) Biologia & mudanças climáticas no Brasil. RiMa, São Carlos

    Google Scholar 

  14. Bueno E (2002) Pau-brasil. Axis Mundi, São Paulo

    Google Scholar 

  15. Callado CH, Neto SJS, Scarano FR, Barros CF, Costa CG (2001a) Anatomical features of growth rings in flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. IAWA J 22:29–42. https://doi.org/10.1163/22941932-90000266

    Article  Google Scholar 

  16. Callado CH, Neto SJS, Scarano FR, Costa CG (2001b) Periodicity of growth rings in some flood- prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. Trees 15:492–497. https://doi.org/10.1007/s00468-001-0128-4

    Article  Google Scholar 

  17. Callado CH, Roig FA, Tomazello-Filho M, Barros CF (2013) Cambial growth periodicity studies of South American woody species—a review. IAWA J 34:213–230. https://doi.org/10.1163/22941932-00000019

    Article  Google Scholar 

  18. CITES (2007) Consideration of proposal for amendment of appendices I & II. The Hague, Belgium

  19. Cook ER (1985) A time series analysis approach to tree-ring standardization. Ph.D. Dissertation, University of Arizona, Tucson

  20. Cook ER, Holmes RL (1996) Guide for computer program ARSTAN. In: Grissino-Mayer HD, Holmes RL, Fritts HC (eds) The international Tree-Ring Data Bank Program Library version 2.0 user’s manual, University of Arizona, Tucson, pp 75–87

  21. Cook E, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, Berlin

    Google Scholar 

  22. Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 B.C. reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91. https://doi.org/10.1007/s003820050006

    Article  Google Scholar 

  23. Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250. https://doi.org/10.1007/s00468-002-0230-2

    Article  Google Scholar 

  24. Estrada GCD, Callado CH, Soares MLG, Lisi CS (2008) Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 22:663–670. https://doi.org/10.1007/s00468-008-0224-9

    Article  Google Scholar 

  25. Fichtler E (2017) Dendroclimatology using tropical broad-leaved tree species—a review. Erdkunde 71:1–18. https://doi.org/10.3112/erdkunde.2017.01.01

    Article  Google Scholar 

  26. Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C1. Biotropica 35:306–317. https://doi.org/10.1111/j.1744-7429.2003.tb00585.x

    Article  Google Scholar 

  27. Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18:442–451. https://doi.org/10.1007/s00468-004-0324-0

    Article  Google Scholar 

  28. Fontana C, Pérez-de-Lis G, Nabais C, Lousada JLPC, Olmedo GM, Botosso PC, Oliveira JM (2018a) Climatic signal in growth-rings of Copaifera lucens: an endemic species of a Brazilian Atlantic forest hotspot, southeastern Brazil. Dendrochronologia 50:23–32. https://doi.org/10.1016/j.dendro.2018.04.004

    Article  Google Scholar 

  29. Fontana C, Reis-Avila G, Nabais C et al (2018b) Dendrochronology and climate in the Brazilian Atlantic Forest: which species, where and how. Neotrop Biol Conserv 13:321–333. https://doi.org/10.4013/nbc.2018.134.06

    Article  Google Scholar 

  30. Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  31. Gagnon E, Bruneau A, Hughes CE, Queiroz LP, Lewis GP (2016) A new generic system for the pantropical Caesalpinia group (Leguminosae). PhytoKeys 71:1–60. https://doi.org/10.3897/phytokeys.71.9203

    Article  Google Scholar 

  32. Gasson P, Warner K, Lewis G (2009) Wood anatomy of Caesalpinia s.s., Coulteria, Erythrostemon, Guilandina, Libidibia, Mezoneuron, Poincianella, Pomaria and Tara (Leguminosae, Caesalpinioideae, Caesalpinieae). IAWA J 30:247–276. https://doi.org/10.1163/22941932-90000218

    Article  Google Scholar 

  33. Höll W (1985) Seasonal fluctuation of reserve materials in the trunkwood of spruce (Picea abies (L.) Karst.). J Plant Physiol 117:355–362

    Article  Google Scholar 

  34. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  35. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2

    Article  Google Scholar 

  36. Lima HC, Lewis GP, Bueno E (2002) Pau-brasil: uma biografia. In: Bueno E (ed) Pau brasil. Axis Mundi, São Paulo, pp 39–76

    Google Scholar 

  37. Lisi CS, Tomazello Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29:189–207. https://doi.org/10.1163/22941932-90000179

    Article  Google Scholar 

  38. Locosselli GM, Buckeridge MS, Moreira MZ, Ceccantini G (2012) A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 27:25–36. https://doi.org/10.1007/s00468-012-0764-x

    Article  Google Scholar 

  39. Locosselli GM, Schöngart J, Ceccantini G (2016) Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees. https://doi.org/10.1007/s00468-015-1351-8

    Article  Google Scholar 

  40. Lopez L, Villalba R (2011) Climate influences on the radial growth of Centrolobium microchaete, a valuable timber species from the tropical dry forest in Bolivia. Biotropica 43:41–49. https://doi.org/10.1111/j.1744-7429.2010.00653.x

    Article  Google Scholar 

  41. Mainieri C (1960) Estudo macro e microscópico de madeiras conhecidas como pau-brasil. IPT, São Paulo, pp 11–15

    Google Scholar 

  42. Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Andrea Jakobsson, Rio de Janeiro

    Google Scholar 

  43. Mattos PP, Braz EM, Domene VD, Sampaio EVSB, Gasson P, Pareyn FGC, Alvarez IA, Baracat A, Araújo EL (2015) Climate-tree growth relationships of Mimosa tenuiflora in seasonally dry tropical forest, Brazil. Cerne 21:141–149. https://doi.org/10.1590/01047760201521011460

    Article  Google Scholar 

  44. Mendivelso HA, Camarero JJ, Gutiérrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on the tree growth in a neotropical dry forest: short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23. https://doi.org/10.1016/j.agrformet.2013.12.010

    Article  Google Scholar 

  45. Oliveira JM, Roig FA, Pillar VD (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Australas Ecol 35:134–147. https://doi.org/10.1111/j.1442-9993.2009.02018.x

    Article  Google Scholar 

  46. Perone A, Lombardi F, Marchetti M et al (2016) Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America. Glob Planet Change 145:1–10. https://doi.org/10.1016/j.gloplacha.2016.08.004

    Article  Google Scholar 

  47. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  48. Rodrigues PJFP, Abreu RCR, Barcellos EMB, Lima HC, Scarano FR (2009) Population structure and one-year dynamics of the endangered tropical tree species Caesalpinia echinata Lam. (Brazilian red-wood): the potential importance of small fragments for conservation. Rodriguésia 60:211–220

    Article  Google Scholar 

  49. Roig AF, Osornio JJJ, Diaz JV, Luckman B, Tiessen H, Medina A, Noellemeyer EJ (2005) Anatomy of growth rings at the Yucatán Peninsula. Dendrochronologia 22:187–193. https://doi.org/10.1016/j.dendro.2005.05.007

    Article  Google Scholar 

  50. Rozas V (2003) Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecol 167:193–212

    Article  Google Scholar 

  51. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16. https://doi.org/10.1007/s00468-010-0480-3

    Article  Google Scholar 

  52. Sauter J (2000) Photosynthate allocation of the vascular cambium: facts and problems. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific, Oxford, pp 71–84

    Google Scholar 

  53. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331. https://doi.org/10.1007/s10531-015-0972-y

    Article  Google Scholar 

  54. Schöngart J, Junk W, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob Change Biol 10:683–692. https://doi.org/10.1111/j.1529-8817.2003.00754.x

    Article  Google Scholar 

  55. Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. https://doi.org/10.1007/s00442-005-0147-8

    Article  PubMed  Google Scholar 

  56. Schöngart J, Orthmann B, Hennenberg KJ, Porembski S, Worbes M (2006) Climate–growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob Change Biol 12:1139–1150. https://doi.org/10.1111/j.1365-2486.2006.01154.x

    Article  Google Scholar 

  57. Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck HJ, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664. https://doi.org/10.1051/forest:2007044

    Article  Google Scholar 

  58. Schulman E (1956) Dendroclimatic change in semiarid America. University of Arizona Press, Tucson

    Google Scholar 

  59. Schweingruber FH (1988) Tree rings. Reidel, Dordrecht

    Google Scholar 

  60. Schweingruber FH (1996) Tree rings and environment dendroecology. Berne, Switzerland

  61. Shimamoto CY, Botosso PC, Marques MCM (2014) How much carbon is sequestered during the restoration of tropical forests? Estimates from tree species in the Brazilian Atlantic forest. For Ecol Manag 329:1–9. https://doi.org/10.1016/j.foreco.2014.06.002

    Article  Google Scholar 

  62. Soliz-Gamboa CC, Rozendaal DMA, Ceccantini G, Angyalossy V, Van Der Borg K, Kuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. https://doi.org/10.1007/s00468-010-0468-z

    Article  Google Scholar 

  63. Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J 20:249–253

    Article  Google Scholar 

  64. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating, 2nd edn. The University of Arizona Press, Tucson

    Google Scholar 

  65. Trouet V, Esper J, Beeckman H (2010) Climate/growth relationships of Brachystegia spiciformis from the miombo woodland in south central Africa. Dendrochronologia 28:161–171. https://doi.org/10.1016/j.dendro.2009.10.002

    Article  Google Scholar 

  66. Varty N (1998) Caesalpinia echinata. The IUCN red list of threatened species. Version 2014.3. http://www.iucnredlist.org. Accessed 29 Dec 2014

  67. Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA (2014) Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–1461. https://doi.org/10.1007/s00442-013-2846-x

    Article  PubMed  Google Scholar 

  68. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO;2

    Article  Google Scholar 

  69. WMO-UNEP (2008) Climate change and water—IPCC technical paper VI

  70. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  71. Wagner FH, Hérault B, Bonal D, Stahl C, Anderson LO, Baker TR, Becker GS, Beeckman H, Souza DB, Botosso PC, David MJ, Bowman S, Bräuning A, Brede B, Brown FI, Camarero JJ, Chagas K, Chave J, Chidumayo EN, ClarkDA Regina F, Costa C, Couralet C, Henrique P, Dalitz H, De VR, Eloisa J, Milani DF, Oliveira EC, De Arruda LDS (2016) Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences 13:2537–2562. https://doi.org/10.5194/bg-13-2537-2016

    Article  Google Scholar 

  72. Zhang Z (2015) Tree-rings, a key ecological indicator of environment and climate change. Ecol Indic 51:107–116. https://doi.org/10.1016/J.ECOLIND.2014.07.042

    Article  Google Scholar 

  73. Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419. https://doi.org/10.1016/j.tplants.2013.05.006

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Laboratorio de Dendrocronología e Historia Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico CONICET-Mendoza, Argentina, for technical support. We also thank the Laboratório de Botânica Estrutural, the Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, and the Museu Nacional do Rio de Janeiro-UFRJ. We acknowledge anonymous referees for suggestions that improved the manuscript, Christopher Lesser and David Martin for English language review, as well as Bruna Luna, PhD for their valuable fieldwork. Finally, we thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the PDSE, as well as CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PPBIO (Programa de Pesquisa em Biodiversidade), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) for the research fellowship grant.

Author information

Affiliations

Authors

Contributions

All authors contributed substantially to the manuscript, as follows: TMM: writing the manuscript, data analysis and discussion of the results. CFB: writing the manuscript and discussion of the results. HCL: collection of samples, support for taxonomy and discussion of results. AFNB: writing the manuscript and discussion of results. WSC: writing the manuscript and data analysis. CGC: writing the manuscript and discussion of results. FR: data analysis and discussion of results. The authors approved the final submission.

Corresponding author

Correspondence to Tahysa Mota Macedo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Leavitt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macedo, T.M., Barros, C.F., de Lima, H.C. et al. Climate signals in tree rings of Paubrasilia echinata (Leguminosae-Caesalpinioidea) from the Atlantic Forest of Brazil. Trees 34, 337–347 (2020). https://doi.org/10.1007/s00468-019-01919-1

Download citation

Keywords

  • Dendrochronology
  • Growth rings
  • pau-brasil
  • Pernambuco wood
  • Precipitation
  • Tropical rainforest