Skip to main content
Log in

It’s contagious: calculation and analysis of xylem vulnerability to embolism by a mechanistic approach based on epidemic modeling

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Vulnerability of xylem to embolism is expressed by vulnerability curves (VC) depicting accumulating loss of hydraulic conductivity against mounting pressure stress. VCs are obtained experimentally by curve fitting, providing important benchmark data on vulnerability of a species, organ, or other specific xylem categories. Since embolism spread by air seeding represents principally an epidemic process, a method based on epidemic modeling is introduced in this contribution which allows rapid and efficient calculation of continuous VC directly from mechanistic equations. The approach is based on the classic SIR model which considers the population to be divided into susceptibles S (functional), infectives I (embolized), and “removed” R individuals (embolized conduits which have exhausted their capacity to pass gas to their neighbors). It is also possible to consider xylem which is composed of different conduit groups (differing in interconnectivity and/or conduit vulnerability). The approach is able to reconstruct all sorts of VC shapes on the basis of two key parameters of embolism, conduit vulnerability and interconnectivity, and the amount of native embolism (initial proportion of I and R conduits). The effect of I and R conduits on VC is different. High initial I leads to non-sigmoidal VC, whereas high initial R promotes sigmoidal VC. Heterogeneous conduit populations being composed of conduit groups of different sizes, interconnectivities, and conduit vulnerabilities can also lead to non-sigmoidal VC with complex shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baas P, Schmid R, van Heuven BJ (1986) Wood anatomy of Pinus longaeva (bristlecone pine) and the sustained length-on-age increase of its tracheids. IAWA J 7:221–228

    Article  Google Scholar 

  • Braun H (1959) Die Vernetzung der Gefäße bei Populus (English summary). Z Bot 47:421–434

    Google Scholar 

  • Brodersen CR et al (2011) Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytol 191:1168–1179

    Article  CAS  Google Scholar 

  • Brodersen CR, Choat B, Chatelet DS, Shackel KA, Matthews MA, McElrone AJ (2013) Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). Am J Bot 100:314–321

    Article  Google Scholar 

  • Burggraaf P (1972) Some observations on the course of the vessels in the wood of Fraxinus excelsior L. Acta Bot Neerl 21:32–47

    Article  Google Scholar 

  • Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell Environ 33:1059–1069

    Article  Google Scholar 

  • Cai J, Li S, Zhang H, Zhang S, Tyree MT (2014) Recalcitrant vulnerability curves: methods of analysis and the concept of fibre bridges for enhanced cavitation resistance Plant. Cell Environ 37:35–44

    Article  Google Scholar 

  • Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM (2004) Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot 55:1569–1575

    Article  CAS  Google Scholar 

  • Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell Environ 28:1082–1089

    Article  Google Scholar 

  • Choat B et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752

    Article  CAS  Google Scholar 

  • Choat B, Brodersen CR, McElrone AJ (2015) Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytol 205:1095–1105. https://doi.org/10.1111/nph.13110

    Article  PubMed  Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S (2016) Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol 170:273–282. https://doi.org/10.1104/pp.15.00732

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018) Triggers of tree mortality under drought. Nature 558:531

    Article  CAS  Google Scholar 

  • Christman MA, Sperry JS, Adler FR (2009) Testing the’rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytol 182:664–674

    Article  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  Google Scholar 

  • Cochard H, Bréda N, Granier A, Aussenac G (1992a) Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.). Ann For Sci 49:225–233

    Article  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT (1992b) use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209

    Article  CAS  Google Scholar 

  • Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell Environ 33:1543–1552

    Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791

    Article  CAS  Google Scholar 

  • Daley DJ, Gani J (2001) Epidemic modelling: an introduction, vol 15. Cambridge University Press, Cambridge

    Google Scholar 

  • Domec J-C, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214

    Article  Google Scholar 

  • Duursma RA, Choat B (2017) fitplc: an R package to fit hydraulic vulnerability curves. J Plant Hydraul 4:1–14

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy, vol 2, 2nd edn. Wiley, New York

    Google Scholar 

  • Gani DDJ, Daley D (1999) Epidemic modeling: an introduction. Cambridge U. Press, Cambridge

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127

    Article  Google Scholar 

  • Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017) An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell Environ 40:831–845

    Article  CAS  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653

    Article  Google Scholar 

  • Hethcote HW, Stech HW, van den Driessche P (1981) Periodicity and stability in epidemic models: a survey. Differential equations and applications in ecology, epidemics, and population problems. Elsevier, Oxford, pp 65–82

    Chapter  Google Scholar 

  • Jacobsen AL, Pratt RB (2012) No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera). New Phytol 194:982–990

    Article  Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556

    Article  CAS  Google Scholar 

  • Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99:1583–1591

    Article  Google Scholar 

  • Jacobsen AL, Valdovinos-Ayala J, Rodriguez-Zaccaro FD, Hill-Crim MA, Percolla MI, Venturas MD (2018) Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees 32:1335–1346

    Article  CAS  Google Scholar 

  • Jacobsen AL, Pratt RB, Venturas MD, Hacke UG (2019) Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA J 40:4-S4

    Article  Google Scholar 

  • Jansen S, Schuldt B, Choat B (2015) Current controversies and challenges in applying plant hydraulic techniques. New Phytol 205:961–964

    Article  Google Scholar 

  • Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant, Cell Environ 18:189–196

    Article  Google Scholar 

  • Johnson DM et al (2018) Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant, Cell Environ 41:576–588

    Article  CAS  Google Scholar 

  • Kitin PB, Fujii T, Abe H, Funada R (2004) Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am J Bot 91:779–788

    Article  Google Scholar 

  • Knipfer T et al (2018) Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species. Tree Physiol 38:1180–1192

    Article  Google Scholar 

  • Koddenberg T, Militz H (2018) Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography. Micron 111:28–35

    Article  Google Scholar 

  • Larter M, Brodribb TJ, Pfautsch S, Burlett R, Cochard H, Delzon S (2015) Extreme aridity pushes trees to their physical limits. Plant Physiol 168:804–807

    Article  CAS  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    Article  Google Scholar 

  • Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013) Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol 16:287–292

    Article  Google Scholar 

  • Li S et al (2016) Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J 37:152–171

    Article  Google Scholar 

  • Liu M, Pan R, Tyree MT (2018) Intra-specific relationship between vessel length and vessel diameter of four species with long-to-short species-average vessel lengths: further validation of the computation algorithm. Trees 32:51–60

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Pinol J, Mencuccini M (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theor Biol 247:788–803

    Article  Google Scholar 

  • López R, Nolf M, Duursma RA, Badel E, Flavel RJ, Cochard H, Choat B (2018) Mitigating the open vessel artefact in centrifuge-based measurement of embolism resistance. Tree Physiol 39:143–155

    Article  Google Scholar 

  • Magal P, Seydi O, Webb G (2016) Final size of an epidemic for a two-group SIR model. SIAM J Appl Math 76:2042–2059

    Article  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Manzoni S, Katul G, Porporato A (2014) A dynamical system perspective on plant hydraulic failure. Water Resour Res 50:5170–5183

    Article  Google Scholar 

  • Martcheva M (2015) Introduction to epidemic modeling. An introduction to mathematical epidemiology. Springer, Berlin, pp 9–31

    Chapter  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Melcher PJ, Zwieniecki MA, Holbrook NM (2003) Vulnerability of xylem vessels to cavitation in sugar maple. Scaling from individual vessels to whole branches. Plant Physiol 131:1775–1780

    Article  CAS  Google Scholar 

  • Mrad A, Domec JC, Huang CW, Lens F, Katul G (2018) A network model links wood anatomy to xylem tissue hydraulic behavior and vulnerability to cavitation. Plant, Cell Environ 41:2178–2730

    Article  Google Scholar 

  • Ogle K, Barber JJ, Willson C, Thompson B (2009) Hierarchical statistical modeling of xylem vulnerability to cavitation. New Phytol 182:541–554

    Article  CAS  Google Scholar 

  • Page GF, Liu J, Grierson PF (2011) Three-dimensional xylem networks and phyllode properties of co-occurring Acacia. Plant, Cell Environ 34:2149–2158

    Article  Google Scholar 

  • Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593

    Article  Google Scholar 

  • Patel RN (1971) Anatomy of stem and root wood of Pinus radiata D. Don. N Zeal J For Sci 1:37–49

    Google Scholar 

  • Rodriguez-Zaccaro FD, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL (2019) Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current-year growth. Plant, Cell Environ 42:1816–1831. https://doi.org/10.1111/pce.13528

    Article  CAS  Google Scholar 

  • Schenk HJ, Steppe K, Jansen S (2015) Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci 20:199–205

    Article  CAS  Google Scholar 

  • Schenk HJ et al (2017) Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol 173:1177–1196

    Article  CAS  Google Scholar 

  • Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S (2013) The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol 33:684–694

    Article  Google Scholar 

  • Skaza J, Blais B (2017) Modeling the infectiousness of Twitter hashtags. Phys A 465:289–296

    Article  Google Scholar 

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459. https://doi.org/10.1093/treephys/19.7.453

    Article  PubMed  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol 17:275–280

    Article  CAS  Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant, Cell Environ 13:427–436

    Article  Google Scholar 

  • Sperry JS, Donelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem Plant. Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant, Cell Environ 35:601–610

    Article  Google Scholar 

  • Tixier A, Herbette S, Jansen S, Capron M, Tordjeman P, Cochard H, Badel E (2014) Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann Bot 114:325–334

    Article  Google Scholar 

  • Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2013) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biol 15:496–504

    Article  CAS  Google Scholar 

  • Torres-Ruiz JM et al (2017) Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact. New Phytol 215:489–499

    Article  Google Scholar 

  • Trueba S, Pouteau R, Lens F, Feild TS, Isnard S, Olson ME, Delzon S (2017) Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell Environ 40:277–289

    Article  CAS  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Tyree MT, Kolb KJ, Rood SB, Patiño S (1994) Vulnerability to drought-induced cavitation of riparian cottonwoods in Alberta: a possible factor in the decline of the ecosystem? Tree Physiol 14:455–466. https://doi.org/10.1093/treephys/14.5.455

    Article  CAS  PubMed  Google Scholar 

  • Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL, Pratt RB (2016) Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length. Tree Physiol 36:1247–1259

    Article  Google Scholar 

  • Venturas MD, Sperry JS, Hacke UG (2017) Plant xylem hydraulics: what we understand, current research, and future challenges. J Integr Plant Biol 59:356–389

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Intervessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell Environ 28:800–812

    Article  Google Scholar 

  • Yin P, Meng F, Liu Q, An R, Cai J, Du G (2018) A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the ‘open-vessel’artifact. Physiol Plant 165:701–710

    Article  Google Scholar 

  • Zhang Y et al (2018) Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiol 38:1016–1025

    Article  Google Scholar 

  • Zimmermann MH, Jeje AA (1981) Vessel-length distribution in stems of some American woody plants. Can J Bot 59:1882–1892

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank James Nebelsick (University of Tübingen) for critically reading the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Roth-Nebelsick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Nardini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth-Nebelsick, A. It’s contagious: calculation and analysis of xylem vulnerability to embolism by a mechanistic approach based on epidemic modeling. Trees 33, 1519–1533 (2019). https://doi.org/10.1007/s00468-019-01891-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01891-w

Keywords

Navigation