Key message
This manuscript mainly deals about the diversity and transcriptional activity of Ty1-copia in Pongamia genome.
Abstract
Pongamia pinnata, a leguminous tree, is popularly known for its biodiesel and medicinal application. However, the structure and the composition of Pongamia nuclear genome are largely unknown. Ty1-copia elements occupy a significant fraction of the plant genome and are responsible for sequence organisation. Here, we have isolated the reverse transcriptase (RT) and RNase H domain of Ty1-copia from Pongamia. In total, 28 Ty1-copia RT sequences were isolated with high levels of sequence heterogeneity. Besides this, the Ty1-copia like elements were also identified in the mitochondrial genome and in the transcriptome library. The analysis revealed that transcriptional activity of Ty1-copia element exists in leaf, root, and seed of salt-stressed and control plants. Dot blot hybridisation reveals that Ty1-copia like retrotransposons occupy around 8.5% of the haploid genome of Pongamia and the phylogenetic study categorised this class of retrotransposons into seven different lineages. These results are useful in understanding the diversity of Ty1-copia lineages and their transcriptional activity present in different tissues of Pongamia.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmed S, Shafiuddin MD, Azam MS, Islam MS, Ghosh A, Khan H (2011) Identification and characterization of jute LTR retrotransposons: their abundance, heterogeneity and transcriptional activity. Mobile Genetic Elements 1:18–28
Bacci MC, Soares RBS, Tajara E-Z, Ambar G, Fischer CN, Guilherme IR, Costa EP, Miranda VFO (2005) Identification and frequency of transposable elements in Eucalyptus. Genet Mol Biol 28:634–639
Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon J-M, Westerman RP, SanMiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732
Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21
Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Scheid OM (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10:e1004115
Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193
Choudhury RR, Basak S, Ramesh AM, Rangan L (2014) Nuclear DNA content of Pongamia pinnata L. and genome size stability of in vitro-regenerated plantlets. Protoplasma 251:703–709
Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503
Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231:233–242
Gao D, Abernathy B, Rohksar D, Schmutz J, Jackson SA (2014) Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris). Front Plant Sci 5:339
He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123:707–714
Hirochika H, Hirochika R (1993) Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Idengaku Zasshi 68:35–46
Hisano H, Tsujimura M, Yoshida H, Terachi T, Sato K (2016) Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC Genom 17:824
Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R, Zheng Y (2012) Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant. DNA Res 19:195–207
Huang J, Guo X, Hao X, Zhang W, Chen S, Huang R, Gresshoff PM, Zheng Y (2016) De novo sequencing and characterization of seed transcriptome of the tree legume Millettia pinnata for gene discovery and SSR marker development. Mol Breeding 36:75
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M (2017) Characterization, genomic organization, abundance, and chromosomal distribution of Ty1-copia retrotransposons in Erianthus arundinaceus. Front Plant Sci 8:924
Jiang S-Y, González JM, Ramachandran S (2013) Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS One 8:e63551
Jordan IK, McDonald JF (1999) The role of interelement selection in Saccharomyces cerevisiae Ty element evolution. J Mol Evol 49:352–357
Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J, Scott PT, Gresshoff PM (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS One 7:e51687
Kesari V, Krishnamachari A, Rangan L (2008) Systematic characterisation and seed oil analysis in candidate plus trees of biodiesel plant, Pongamia pinnata. Ann Appl Biol 152:397–404
Kesari V, Sudarshan M, Das A, Rangan L (2009) PCR amplification of the genomic DNA from the seeds of Ceylon ironwood, Jatropha, and Pongamia. Biomass Bioenerg 33:1724–1728
Kesari V, Ramesh AM, Rangan L (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. BioMed Research International 2013:9
Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A (1996) Copia, gypsy and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585
Ma Y, Sun H, Zhao G, Dai H, Gao X, Li H, Zhang Z (2008) Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 27:499–507
Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408
Michalovova M, Vyskot B, Kejnovsky E (2013) Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111:314–320
Navarro-Quezada A, Schoen DJ (2002) Sequence evolution and copy number of Ty1-copia retrotransposons in diverse plant genomes. Proc Natl Acad Sci USA 99:268–273
Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445
Park JM, Schneeweiss GM, Weiss-Schneeweiss H (2007) Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 387:75–86
Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269
Rajput MK, Upadhyaya KC (2010) Characterization of heterogeneity in Ty1-copia group retrotransposons in chickpea (Cicer arietinum L.). Mol Biol 44:529–535
Singh A, Nirala NK, Narula A, Das S, Srivastava PS (2011) Isolation and characterization of Ty1-copia group of LTRs in genome of three species of Datura: D. innoxia, D. stramonium and D. metel. Physiol Mol Biol Plants 17:255–261
Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M (2002) Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933
Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478
Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genom 11:601
Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292
Wang F, Tong Z, Sun J, Shen Y, Zhou J, Gao Z, Zhang Z (2010) Genome-wide detection of Ty1-copia and Ty3-gypsy group retrotransposons in Japanese apricot (Prunus mume Sieb. et Zucc.). Afr J Biotech 9:8583–8596
Wegrzyn JL, Whalen J, Kinlaw CS, Harry DE, Puryear J, Loopstra CA, Gonzalez-Ibeas D, Vasquez-Gross HA, Famula RA, Neale DB (2016) Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata. Tree Genet Genomes 12:44
Woodrow P, Ciarmiello LF, Fantaccione S, Annunziata MG, Pontecorvo G, Carillo P (2012) Ty1-copia group retrotransposons and the evolution of retroelements in several angiosperm plants: evidence of horizontal transmission. Bioinformation 8:267–271
Yan L, Gu YH, Tao X, Lai XJ, Zhang YZ, Tan XM, Wang H (2014) Scanning of transposable elements and analyzing expression of transposase genes of sweet potato (Ipomoea batatas). PLoS One 9:e90895
Zaki EA (2005) Ty1-copia group retrotransposon families in cultivated cottons G. barbadense L. identified by reverse transcriptase domain analysis. DNA Seq 16:288–294
Zedek F, Smerda J, Smarda P, Bures P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None of the authors have any conflict of interest to declare.
Additional information
Communicated by Alia.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Shelke, R.G., Rangan, L. Isolation and characterisation of Ty1-copia retrotransposons from Pongamia pinnata. Trees 33, 1559–1570 (2019). https://doi.org/10.1007/s00468-019-01878-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00468-019-01878-7


