Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests

Abstract

Key message

Wood density profiles revealed significant differences in wood formation along a precipitation gradient in the Congo Basin. The response of trees to climate change varies depending on leaf phenology properties.

Abstract

Tropical forests face increasing pressures due to climate change and yet, the response of trees to varying climate conditions remains poorly understood. In the present study, we aim to fill some gaps by comparing the leaf phenology and the pith-to-bark wood anatomical variability of 13 common tree species of the Democratic Republic of Congo among three sites presenting contrasted rainfall regimes. We measured pith-to-bark density profiles on which we applied wavelet analyses to extract three descriptors, which we further used as proxies to describe and compare wood anatomical variability. They describe the growth periodicity, regularity and the amplitude of variations of the anatomical patterns. Our results show that evergreen species tend to have significantly higher anatomical variability where rainfall seasonality is more pronounced. Deciduous species, in spite of shedding leaves for longer periods in drier sites, did not show significant differences in their anatomical variability. The analyses of density profiles and phenology records suggest that the seasonality of precipitation influences both leaf phenology and cambial activity. The high intra-site variability in phenology and anatomy suggests that site-related micro-climate conditions also influence cambial activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen C, Macalady A, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D, Hogg E et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  2. Alvim P (1964) Tree growth periodicity in tropical climates. In: Zimmerman M (ed) The formation of wood in forest trees. Academic Press, New York, pp 479–495

    Google Scholar 

  3. Babst F, Bouriaud O, Papale D, Gielen B, Janssens I, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B et al (2014) Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–1303

    Article  CAS  PubMed  Google Scholar 

  4. Baldeck C, Asner G, Martin R, Anderson C, Knapp D, Kellner J, Wright S (2015) Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLOS ONE 10:e0118403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bastin JF, Fayolle A, Tarelkin Y, Van den Bulcke J, de Haulleville T, Mortier F, Beeckman H, Van Acker J, Serckx A, Bogaert J, De Cannière C (2015a) Wood specific gravity variations and biomass of central african tree species: the simple choice of the outer wood. Plos One 10:e0142146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bastin JF, Barbier N, Réjou-Méchain M, Fayolle A, Gourlet-Fleury S, Maniatis D, de Haulleville T et al (2015b) Seeing Central African forests through their largest trees. Sci Rep 5:13156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  8. Beeckman H (2016) Wood anatomy and trait-based ecology. IAWA Journal 37:127–151

    Article  Google Scholar 

  9. Benedet F, Doucet J, Fayolle A, Gourlet-Fleury S, Vincke D. Cofortraits, African plant traits information database. version 1.0. http://coforchange.cirad.fr/african_plant_trait [accessed 28 September 2016]

  10. Biudes M, Vourlitis G, Machado N, de Arruda P, Neves G, de Almeida Lobo F, Neale C, de Souza Nogueira J (2015) Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agric For Meteorol 202:112–124

    Article  Google Scholar 

  11. Bonan G (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  12. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247

    Article  Google Scholar 

  13. Borchert R, Calle Z, Strahler A, Baertschi A, Magill R, Broadhead J, Kamau J, Njoroge J, Muthuri C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13

    Article  PubMed  Google Scholar 

  14. Brienen R, Schöngart J, Zuidema P (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Tropical Tree Physiology. Springer International Publishing. 439–461

  15. Briffa K, Melvin T (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Dendroclimatology. Springer Netherlands. 113–145

  16. Brodribb T (2017) Progressing from ‘functional’ to mechanistic traits. New Phytol 215:9–11

    Article  PubMed  Google Scholar 

  17. Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, Brammer M (2003) Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12(5):375–399

    Article  PubMed  Google Scholar 

  18. Callado C, Barros C, Costa C, da Silva Neto S, Scarano F (2001) Anatomical features of growth rings in flood-prone trees of the Atlantic rain forest in Rio De Janeiro, Brazil. IAWA J 22:29–42

    Article  Google Scholar 

  19. Carlquist S (1988) Comparative wood anatomy. Springer, Berlin

    Google Scholar 

  20. Cassart B, Angbonga Basia A, Titeux H, Andivia E, Ponette Q (2016) Contrasting patterns of carbon sequestration between Gilbertiodendron dewevrei monodominant forests and Scorodophloeus zenkeri mixed forests in the Central Congo basin. Plant Soil 414:309–326

    Article  CAS  Google Scholar 

  21. Chave J, Condit R, Muller-Landau H, Thomas S, Ashton P, Bunyavejchewin S, Co L, Dattaraja H, Davies S, Esufali S et al (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol 6:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chave J, Coomes D, Jansen S, Lewis S, Swenson N, Zanne A (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  23. Couralet C, Sterck F, Sass-Klaassen U, Van Acker J, Beeckman H (2010) Species-specific growth responses to climate variations in understory trees of a central african rain forest. Biotropica 42:503–511

    Article  Google Scholar 

  24. Couralet C, Van den Bulcke J, Ngoma L, Van Acker J, Beeckman H (2013) Phenology in functional groups of central African rainforest trees. J Trop For Sci, 361–374

  25. Davies S, Ashton P (1999) Phenology and fecundity in 11 sympatric pioneer species of macaranga (Euphorbiaceae) in borneo. Am J Bot 86:1786–1795

    Article  CAS  PubMed  Google Scholar 

  26. De Mil T (2017) Intra-annual to multi-decadal xylem traits in a tropical moist semi-deciduous forest of Central Africa. Ghent University. Faculty of Bioscience Engineering, Ghent

    Google Scholar 

  27. De Mil T, Tarelkin Y, Hahn S, Hubau W, Deklerck V, Debeir O, Van den Bulcke J (2018) Wood density profiles and their corresponding tissue fractions in tropical angiosperm trees. Forests 9(12):763

    Article  Google Scholar 

  28. De Frenne P, Verheyen K (2016) Weather stations lack forest data. Science 351:234–234

    Article  PubMed  Google Scholar 

  29. De Ridder F, Schoukens J, Pintelon R, Gillikin DP, André L, Baeyens W, de Brauwere A, Dehairs F (2004) Decoding non-linear growth rates in biogenic environmental archives. Geochem Geophys Geosyst 5:Q12015. https://doi.org/10.1029/2004GC000771

    Article  Google Scholar 

  30. De Ridder M, Van den Bulcke J, Vansteenkiste D, Van Loo D, Dierick M, Masschaele B, De Witte Y, Mannes D, Lehmann E, Beeckman H et al (2011) High-resolution proxies for wood density variations in Terminalia superba. Ann Bot 107:293–302

    Article  PubMed  Google Scholar 

  31. De Ridder M, Trouet V, Van den Bulcke J, Hubau W, Van Acker J, Beeckman H (2013) A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees 27:1225–1238

    Article  Google Scholar 

  32. De Mil T, Vannoppen A, Beeckman H, Van Acker J, Van den Bulcke J (2016) A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis. Ann Bot 117:1187–1196

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Micco V, Campelo F, Cherubini P, Battipaglia G, Bräuning A, Grabner M, De Luis M (2016) Intra-annual density fluctuations in tree rings: how, when, where, and why? IAWA Journal 37:232–259

    Article  Google Scholar 

  34. Dierick M, Masschaele B, Hoorebeke L (2004) Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView®. Meas Sci Technol 15:1366–1370

    Article  CAS  Google Scholar 

  35. Dierick M, Van Loo D, Masschaele B, Van den Bulcke J, Van Acker J, Cnudde V, Van Hoorebeke L (2014) Recent micro-CT scanner developments at UGCT. Nucl Instrum Methods Phys Res Sect B 324:35–40

    Article  CAS  Google Scholar 

  36. Dong S, Davies S, Ashton P, Bunyavejchewin S, Supardi M, Kassim A, Tan S, Moorcroft P (2012) Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proceedings of the Royal Society B: Biological Sciences 279: 3923–3931

  37. Dunne K, Willmott C (2000) Global Distribution of Plant-Extractable Water Capacity of Soil (Dunne). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/545. Accessed 15 Mar 2017

  38. FAO (2007) Digital soil map of the world. FAO, Rome

    Google Scholar 

  39. FAO (2016) State of the World’s forests. FAO, Rome

    Google Scholar 

  40. Farge M (1992) Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24(1):395–458

    Article  Google Scholar 

  41. Fichtler E, Worbes M (2012) Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. Iawa Journal 33(2):119–140

    Article  Google Scholar 

  42. Fick SE, Hijmans RJ (2017)) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  43. Fonti P, Von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  44. Gartner B (1995) Plant stems: physiology and functional morphology. Academic Press

  45. Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen C, Fensham R, Laughlin D, Kattge J, Bönisch G et al (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539–553

    Article  PubMed  Google Scholar 

  46. Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema P (2014) Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For Ecol Manag 323:65–78

    Article  Google Scholar 

  47. Haralick R, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621

    Article  Google Scholar 

  48. Hudson I, Keatley M, Kang I (2011) Wavelet characterization of eucalypt flowering and the influence of climate. Environ Ecol Stat 18(3):513–533

    Article  Google Scholar 

  49. IPCC (2013) Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK et al (eds), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press

    Google Scholar 

  50. James R, Washington R, Rowell D (2013) Implications of global warming for the climate of African rainforests. Philos Trans R Soc B: Biol Sci 368:20120298–20120298

    Article  Google Scholar 

  51. Kearsley E, de Haulleville T, Hufkens K, Kidimbu A, Toirambe B, Baert G, Huygens D, Kebede Y, Defourny P, Bogaert J et al (2013) Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun 4:2269

    Article  CAS  PubMed  Google Scholar 

  52. Koch M, Marković D (2007) Evidences for climate change in Germany over the 20th century from the stochastic analysis of hydro-meteorological time-series. In MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New Zealand

  53. Larson PR (2012) The vascular cambium: development and structure. Springer Science & Business Media

  54. Lau K, Weng H (1995) Climate signal detection using wavelet transform: how to make a time series sing. Bull Am Meteorol Soc 76(12):2391–2402

    Article  Google Scholar 

  55. Lewis S, Lloyd J, Sitch S, Mitchard E, Laurance W (2009) Changing ecology of tropical forests: evidence and drivers. Annual review of ecology. Evolut Syst 40:529–549

    Article  Google Scholar 

  56. Lisi C, Roig F, Voigt A, Maria V, Tomazello Fo M, Ferreira-Fedele L, Botosso P (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29:189–207

    Article  Google Scholar 

  57. Lu X, Liu R, Liu J, Liang S (2007) Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogr Eng Rem Sens 73(10):1129–1139

    Article  Google Scholar 

  58. Marcati C, Oliveira J, Machado S (2006) Growth rings in cerrado woody species: occurrence and anatomical markers. Biota Neotropica 6

  59. Mariaux A, Bossanyi I (2016) Nature and periodicity of growth rings in African timber: can they be used to determine the age of trees? Bois et Forêts des Tropiques 327:51–76

    Article  Google Scholar 

  60. Martínez-Cabrera H, Jones C, Espino S, Schenk H (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot 96(8):1388–1398

    Article  PubMed  Google Scholar 

  61. Milton K (1991) Leaf change and fruit production in six neotropical moraceae species. The Journal of Ecology 79:1–26

    Article  Google Scholar 

  62. Moreau I (2016) Evidencing land cover dynamics and tropical forest seasonality: the benefit of 13 years of daily global observation (SPOT-VEGETATION). PhD thesis, Université Catholique de Louvain, Belgium

  63. Morlet J (1983) Sampling theory and wave propagation. Issues in Acoustic signal/Image processing and recognition, 1: 233–261

  64. Morton D, Nagol J, Carabajal C, Rosette J, Palace M, Cook B, Vermote E, Harding D, North P (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506:221–224

    Article  CAS  PubMed  Google Scholar 

  65. Moura Y, Galvão L, dos Santos J, Roberts D, Breunig F (2012) Use of MISR/Terra data to study intra- and inter-annual EVI variations in the dry season of tropical forest. Remote Sens Environ 127:260–270

    Article  Google Scholar 

  66. Moya R, Tomazello Filho M (2009) Wood density variation and tree ring demarcation in Gmelina arborea trees using X-ray densitometry. Cerne 15(1):92–100

    Google Scholar 

  67. Nath C, Munoz F, Pélissier R, Burslem D, Muthusankar G (2016) Growth rings in tropical trees: role of functional traits, environment, and phylogeny. Trees 30:2153–2175

    Article  Google Scholar 

  68. O’Brien J, Oberbauer S, Clark D, Clark D (2008) Phenology and stem diameter increment seasonality in a costa rican wet tropical forest. Biotropica 40:151–159

    Article  Google Scholar 

  69. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time series analysis. Eos, Transactions, American Geophysical Union 77: 379

  70. Paluš M, Novotná D, Tichavský P (2005) Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic oscillation. Geophys Res Lett. https://doi.org/10.1029/2005GL022838

    Article  Google Scholar 

  71. Pan Y, Birdsey R, Fang J, Houghton R, Kauppi P, Kurz W, Phillips O, Shvidenko A, Lewis S, Canadell J et al (2011) A Large and Persistent Carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  72. Peel M, Finlayson B, McMahon T (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Dis 4:439–473

    Article  Google Scholar 

  73. Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detecting long-term growth trends using tree rings: a critical evaluation of methods. Global change biology 21(5):2040–2054

    Article  PubMed  Google Scholar 

  74. Philippon N, de Lapparent B, Gond V, Sèze G, Martiny N, Camberlin P, Cornu G, Morel B, Moron V, Bigot S et al (2016) Analysis of the diurnal cycles for a better understanding of the mean annual cycle of forests greenness in Central Africa. Agric For Meteorol 223:81–94

    Article  Google Scholar 

  75. Phillips O, van der Heijden G, Lewis S, López-González G, Aragão L, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Dávila E et al (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    Article  PubMed  Google Scholar 

  76. Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  77. Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Global Planet Change 133:65–78

    Article  Google Scholar 

  78. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  79. Ricker N (1953) Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics 18(4):769–792

    Article  Google Scholar 

  80. Rigozo N, Nordeman D, Echer E, Vieira L, Echer M, Prestes A (2005) Tree-ring width wavelet and spectral analysis of solar variability and climatic effects on a Chilean cypress during the last two and a half millennia. Climate of the Past Discussions 1(1):121–135

    Article  Google Scholar 

  81. Rozendaal D, Zuidema P (2011) Dendroecology in the tropics: a review. Trees 25:3–16

    Article  Google Scholar 

  82. Schaefli B, Zehe E (2009) Hydrological model performance and parameter estimation in the wavelet-domain. Hydrol Earth Syst Sci 13(10): 1921

  83. Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  Google Scholar 

  84. Sexton J, Noojipady P, Song X, Feng M, Song D, Kim D, Anand A, Huang C, Channan S, Pimm S et al (2016) Conservation policy and the measurement of forests. Nature Climate Change 6(2):192–196

    Article  Google Scholar 

  85. Singh K, Kushwaha C (2016) Deciduousness in tropical trees and its potential as indicator of climate change: a review. Ecological indicators 69:699–706

    Article  Google Scholar 

  86. Tarelkin Y, Delvaux C, De Ridder M, El Berkani T, De Cannière C, Beeckman H (2016) Growth-ring distinctness based on IAWA’s definition: variability and consequences for trait analysis. IAWA Journal 37:275–294

    Article  Google Scholar 

  87. Van den Bulcke J, Wernersson E, Dierick M, Van Loo D, Masschaele B, Brabant L, Boone M, Van Hoorebeke L, Haneca K, Brun A et al (2014) 3D tree-ring analysis using helical X-ray tomography. Dendrochronologia 32:39–46

    Article  Google Scholar 

  88. van der Werf G, Morton D, DeFries R, Olivier J, Kasibhatla P, Jackson R, Collatz G, Randerson J (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  89. Vancutsem C, Pekel J, Kibambe L, Blaes X, de Waseige C, Defourny F (2006) République démocratique du Congo - occupation du sol. Carte Géographique. Presses Universitaire de Louvain. Bruxelles, Belgique

    Google Scholar 

  90. Verheyden A (2004) Rhizophora mucronata wood as a proxy for changes in environmental conditions, a study on the wood anatomy, stable isotope chemistry and inorganic composition of a Kenyan mangrove species. PhD Thesis. Brussels, Belgium: Vrije Universiteit Brussel

  91. Verheyden A, De Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167(2):425–435

    Article  PubMed  Google Scholar 

  92. Viennois G, Barbier N, Fabre I, Couteron P (2013) Multiresolution quantification of deciduousness in West-Central African forests. Biogeosciences 10:6957–6967

    Article  Google Scholar 

  93. Villar-Salvador P, Castro-Díez P, Pérez-Rontomé C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees 12:90–96

    Google Scholar 

  94. Vlam M, Baker P, Bunyavejchewin S, Zuidema P (2014) Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–1461

    Article  PubMed  Google Scholar 

  95. Vlassenbroeck J, Dierick M, Masschaele B, Cnudde V, Van Hoorebeke L, Jacobs P (2007) Software tools for quantification of X-ray microtomography at the UGCT. Nuclear instruments and methods in physics research section a: accelerators, spectrometers. Detectors Associated Equipment 580:442–445

    Article  CAS  Google Scholar 

  96. Wheeler E, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the insidewood database. IAWA Journal 28:229–258

    Article  Google Scholar 

  97. Wiemann M, Wheeler E, Manchester S, Portier K (1998) Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeogr Palaeoclimatol Palaeoecol 139:83–100

    Article  Google Scholar 

  98. Wimmer R (2002) Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20:21–36

    Article  Google Scholar 

  99. Worbes M (1995) How to measure growth dynamics in tropical trees a review. IAWA J 16:337–351

    Article  Google Scholar 

  100. Worbes M (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Amazonian Floodplain Forests. Springer Netherlands, 329–346

  101. WRB (World reference base for soil resources) (2014) International soil classification system for naming soils and creating legends for soil maps. World Soil Reports, (106). FAO. Rome

  102. Zanne A, Westoby M, Falster D, Ackerly D, Loarie S, Arnold S, Coomes D (2010) Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    Article  PubMed  Google Scholar 

  103. Zieminska K, Butler D, Gleason S, Wright I, Westoby M (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS 5:plt046–plt046

    Article  CAS  PubMed Central  Google Scholar 

  104. Zuidema P, Baker P, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the FNRS-FRIA (FC 1371) and the Jaumotte-Demoulin foundation (Van Buuren funds) for supporting and funding, to the WWF DRC (Bruno Perodeau, Jean Mobuli), NGO MbouMonTour (Jean-Christophe Bokika), UniKis (Hippolyte Nshimba, Sylvain Kumba) and ERAIFT (Baudouin Michel, Bhely Angoboy) for logistical support, to Jean-Claude Cerre, Stijn Willen (UGent, Belgium), Thomas El Berkani and Manoe De Neck for assistance with sample preparation and scanning, to Maaike De Ridder (RMCA, Belgium) for advice, to the local community chiefs from villages Nkala, Mpelu, Yoko and Luki for authorizations, and particularly, to Pala, Mora, Alpha, Ridjo, Mbambi and Placide for fieldwork assistance. Dr. Koen Hufkens acknowledges support from the NSF Macrosystems Biology programme (award EF-1065029). Finally, we thank Pr. Adeline Fayolle from ULg for her help during the redaction of the manuscript.

Author information

Affiliations

Authors

Contributions

YT, KH, JVB, JFB, HB and CC planned and designed the research. YT, JDB and KH collected data. YT, SH and OD performed experiments. YT, KH, JB, JFB and CC analysed and interpreted data. YT and KH wrote the manuscript. All the co-authors revised the manuscript.

Corresponding author

Correspondence to Yegor Tarelkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Braeuning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8661 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarelkin, Y., Hufkens, K., Hahn, S. et al. Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests. Trees 33, 893–909 (2019). https://doi.org/10.1007/s00468-019-01826-5

Download citation

Keywords

  • Wood density
  • Wood anatomy
  • Leaf phenology
  • Wavelet analysis
  • Tropical tree growth
  • Climate change