Advertisement

Trees

, Volume 33, Issue 3, pp 867–876 | Cite as

Reproductive phenology variation of the multiple inflorescence-palm tree Wettinia maynensis in relation to climate, in a Piedmont forest in western Amazonia

  • María Cristina PeñuelaEmail author
  • Mariela Bustillos-Lema
  • Sara Álvarez-Solas
  • Luis Alberto Núñez-Avellaneda
Original Article

Abstract

Key message

Wettinia maynensis’ phenology is influenced by temperature and the relative humidity, suggesting that the reproductive phenology can change in extreme climate event contexts, even in very humid unseasonal forests.

Abstract

Wettinia maynensis is a piedmont palm tree whose ecology, phenology and responses to climate are yet unknown. In order to examine the reproductive biology of this species, we observed the flowering and fruiting performance of 101 adult palms in the Colonso Chalupas Biological Reserve in the Ecuadorian Piedmont, located between the Andean mountains and the Amazon. All individuals were monitored every 1 or 2 months during 2.3 years (2015–2018). The inflorescences are infrafoliar with usually one central, large, pistillate and several lateral, centrifugally smaller, staminate inflorescences. Flowering took place throughout the year although staminate and pistillate inflorescences showed low synchrony towards the end of the year, 40% and 32%, respectively. Staminate inflorescences showed a negative strong relationship with relative humidity and a positive one with temperature. The infructescences exhibited high synchrony (80%) for almost 6 months. Compared to other species of the genus, W. maynensis presented the lowest ratio of male/female inflorescences, the higher production of infructescences but lower number of fruits per year. Infructescences production per palm was between cero and 7, and the time elapsed between the fruit formation and its dehiscence was about 5–8 months. Some palms were observed with simultaneously active pistillate and staminate inflorescences (21–22 palms), therefore geitonogamy is not discarded. Wettinia maynensis inflorescences production and its correlation with relative humidity, hence with temperature, highlights that crucial changes could occur in the reproductive phenology of this species under future climate change scenarios affecting the population dynamics and then the community of Andean–Amazon piedmont forests.

Keywords

Andean–Amazon piedmont Relative humidity Flowers production Synchrony Infrutescences 

Notes

Acknowledgements

We are grateful to the students: Martin Hinojosa, Nataly Mendez, Victor Rueda, Tamia Torres, Abigail Chávez, Jimmy Velastegui, Gabriela Urresta and Lipsi Villegas for their collaboration counting flowers, to Kevin Feijó for climbing some of the palms and Lucas Ramis for the elaboration of the map. Finally, we are grateful to Ligia Estela Urrego, Eliana Jiménez and two anonymous reviewers for comments on the manuscript. We are also particularly thankful to Mr. Grefa “Oso” who kindly allowed us to study into his property. Part of the project was supported by a grant-convocatoria semillas I- of the Universidad Regional Amazonica Ikiam. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bacon CD, Velasquez-Puentes F, Flórez-Rodríguez A, Balslev H, Galeano G, Bernal R, Antonelli A (2016) Phylogenetics of Iriarteeae (Arecaceae), cross-Andean disjunctions and convergence of clustered infructescence morphology in Wettinia. Bot J Linn Soc 182(2):272–286CrossRefGoogle Scholar
  2. Barfod AS, Hagen M, Borchsenius F (2011) Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Bot 108(8):1503–1516CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bencke CS, Morellato LPC (2002) Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Braz J Bot 1:237–248CrossRefGoogle Scholar
  4. Cámara-Leret R, Tuomisto H, Ruokolainen K, Balslev H, Kristiansen M, S (2017) Modelling responses of western Amazonian palms to soil nutrients. J Ecol 105(2):367–381CrossRefGoogle Scholar
  5. Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ et al (2013) Phenological changes in the Southern Hemisphere. PLOS One 8(10):e75514CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cifuentes L, Moreno F, Arango DA (2013) Comportamiento fenológico de Euterpe oleracea (Arecaceae) en bosques inundables del Chocó biogeográfico. Revista mexicana de biodiversidad 84(2):591–599CrossRefGoogle Scholar
  7. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera palmarum. Evolution and classification of the palms, 2nd edn. Kew, Royal Botanic GardensGoogle Scholar
  8. Ferreira SADN, Santos LAD (1992) Viabilidade de sementes de pupunha (Bactris gasipaes Kunth). Acta Amazonica 22(3):303–330CrossRefGoogle Scholar
  9. Fisher JB, Moore HE (1977) Multiple inflorescences in palms (Arecaceae): their development and significance. Bot Jahrb Syst 98(4):573–611Google Scholar
  10. Galeano G, Bernal R (2010) Palmas de Colombia. Guía de campo. Universidad Nacional de Colombia, Bogotá, p 688Google Scholar
  11. Galetti M, Ziparro VB, Morelatto LPC (1999) Fruiting phenology and frugivory on the palm Euterpe edulis in a lowland Atlantic Forest of Brazil. Ecotropica 5:115–122Google Scholar
  12. Garcia VA, Barbedo CJ (2016) Phenology of Bactris gasipaes Kunth, Euterpe edulis Mart. e Syagrus romanzoffiana (Cham.) Glassman in the Vale do Ribeira, São Paulo State. Brazil Hoehnea 43(1):135–149CrossRefGoogle Scholar
  13. Genini J, Galetti M, Morellato LPC (2009) Fruiting phenology of palms and trees in an Atlantic rainforest land-bridge island. Flora-morphol Distrib Funct Ecol Plants 204(2):131–145Google Scholar
  14. Guilherme FAG, Vasconcelos EI, Coelho CP, Ressel K, Batista NTF, Souza LF (2015) Vegetative and reproductive phenology of Butia purpurascens Glassman (Arecaceae) under the effects of leaf harvesting. Braz J Biol 75(1):77–85CrossRefPubMedGoogle Scholar
  15. Laboratorio de Cambio Global (2018) Universidad Regional Amazónica Ikiam, Napo, EcuadorGoogle Scholar
  16. Lara CE, Díez MC, Restrepo Z, Núñez LA, Moreno F (2017) Fenología floral y visitantes florales de la palma macana Wettinia kalbreyeri (Arecaceae) en un bosque montano de los Andes. Revista Mexicana de Biodiversidad 88(1):106–112CrossRefGoogle Scholar
  17. Lara Vásquez CE (2011) Fenología reproductiva y demografía de la palma Wettinia kalbreyeri (Burret) en un bosque altoaldino de Colombia. Tesis de Maestria (MSc) Tesis en Bosques y Conservación Ambiental. Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Sede MedellínGoogle Scholar
  18. Lara Vásquez CE, Díez Gómez MC, Moreno Hurtado FH (2012) Population structure and demography of the palm Wettinia kalbreyeri from an andean montane forest of colombia / estructura poblacional y demografía de la palma macana wettinia kalbreyeri en un bosque altoandino de colombia. Rev Fac Nac Agron Medellín 65(2):6739–6747Google Scholar
  19. Lozano P (2012) Descubriendo la flora de la parte alta del Bosque Protector Colonso. Fundación Bosques para la Conservación & Ministerio del Ambiente, QuitoGoogle Scholar
  20. Lozano P, Jara LF, Sánchez A (2011) Descubriendo la flora del Bosque Protector Colonso. Fundación Bosques para la Conservación & Ministerio del Ambiente, QuitoGoogle Scholar
  21. Mendes FN, Valente RM, Rêgo MMC, Esposito MC (2017) Reproductive phenology of Mauritia flexuosa L.(Arecaceae) in a coastal restinga environment in northeastern Brazil. Braz J Biol 77(1):29–37CrossRefPubMedGoogle Scholar
  22. Ministerio de Agricultura y Ganadería (2015) SIGTIERRAS. In: Cartogr. Temática. http://www.sigtierras.gob.ec/. Accessed 6 Feb 2018
  23. Ministerio del Ambiente del Ecuador (2012) Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaria de Patrimonio natural, QuitoGoogle Scholar
  24. Moraes M, Paniagua-Zambrana N, Cámara-Leret R, Balslev H, Macía M (2015) Capítulo 4. Palmas utiles de Bolivia, Colombia, Ecuador y Perú. In: Balslev H, Macía MJ, Navarrete H (eds) Cosecha de Palmas en el Noroeste de Suramérica: Bases Científicas para su Manejo y Conservación. Pontificia Universidad Católica del Ecuador, Quito, pp 87–102Google Scholar
  25. Navarro JA, Galeano G, Peñuela M (2010) Palmas del CEA En M. C. Peñuela M. & E. M. Jiménez. Plantas del Centro Experimental Amazónico -CEA- Mocoa, Putumayo (pp. 321–390). Corporación para el Desarrollo Sostenible del Sur de la Amazonia-Corpoamazonia-, Grupo de Ecología de Ecosistemas Terrestres Tropicales, Universidad Nacional de Colombia, Sede Amazonía, LeticiaGoogle Scholar
  26. Núñez LA, Bernal R, Knudsen J (2005) Diurnal palm pollination by mytropine beetles: is it weather-related? Plant Syst Evol 208:187–196.  https://doi.org/10.1007/s00606-005-0340-6 CrossRefGoogle Scholar
  27. Núñez Avellaneda LA (2014) Patrones de asociación entre insectos polinizadores y palmas silvestres en Colombia con énfasis en palmas de importancia económica. Doctoral dissertation, Universidad Nacional de ColombiaGoogle Scholar
  28. Parra-Tabla V, Vargas CF (2007) Flowering synchrony and floral display size affect pollination success in a deceit-pollinated tropical orchid. Acta Oecol 32(1):26–35CrossRefGoogle Scholar
  29. Peñuela MC, Schwarz A, Monteros-Altamirano A, Zurita-Benavides MG (2016) Guia de la Agrodiverdidad: Tres comunidades kichwa: Atacapi, Alto Tena y Pumayacu, Primera. Universidad Regional Amazónica ikiam, TenaGoogle Scholar
  30. Talora DC, Morellato PC (2000) Fenologia de espécies arbóreas em floresta de planície litorânea do sudeste do Brasil. Braz J Bot 1:13–26Google Scholar
  31. Urrego LE, Galeano A, Peñuela C, Sánchez M, Toro E (2016) Climate-related phenology of Mauritia flexuosa in the Colombian Amazon. Plant Ecol 217(10):1207–1218CrossRefGoogle Scholar
  32. Valencia R, Montúfar R (2013) Capítulo I: Diversidad y Endemismo. In: Valencia R, Montufar R, Navarrete H, Baslev H (eds) Palmas Ecuatorianas: Biología y Uso Sostenible. Herbario QCA de la Pontificia Universidad Católica del EcuadorGoogle Scholar
  33. van der Hoek Y, Jensen R, Salagaje LAo and Ordóñez-Delgado L (2018) A preliminary list of the birds of the foothills and southeastern buffer zone of Colonso Chalupas Biological Reserve. Ecuador Cotinga 40:12–22 (published online 16 June 2018) Google Scholar
  34. Villa-Muñoz G, Garwood N, Bass M, HN (2016) Árboles comunes de Yasuní: una guía para identificar los árboles comunes de la Amazonía ecuatoriana con las comunidades Huaorani de Guiyero. Finding Species Inc. ISBN, QuitoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Regional Amazónica IkiamTenaEcuador
  2. 2.BogotáColombia

Personalised recommendations