Skip to main content

Advertisement

Log in

Biotic and abiotic influences on monthly variation in carbon fluxes in on-year and off-year Moso bamboo forest

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Monthly variation in gross primary productivity (GPP) between on-years and off-years were different. Main drivers of GPP in on-years were abiotic. In off-years drivers were biotic and abiotic.

Abstract

Understanding biotic (living or once-living organisms) and abiotic (non-living physical and chemical elements) influences on seasonal variation in carbon fluxes in Moso bamboo forest is important for predicting future carbon sequestration under climate change. Although differing physiological and ecological characteristics of Moso bamboo forest between on-years and off-years have been observed, the drivers of annual differences in carbon fluxes remain unknown. In this study, drivers of variation in carbon fluxes were analyzed based on gross primary productivity (GPP) and biotic factors (leaf area and chlorophyll content here, represented by vegetation indices—VIs) and abiotic factors. Results showed that average monthly GPP between on-years and off-years was significantly different from January to June, mainly due to natural variation in biotic factors. The monthly variation in GPP during on-years was mainly influenced by abiotic factors, whereas that in off-years was determined by the combination of biotic and abiotic factors. Monthly variation and differences in GPP between on-years and off-years were well represented by VIs. The GPP was more strongly correlated with VIs in off-years than in on-years, owing to large seasonal variation in canopy chlorophyll content. Hence, GPP estimated from both air temperature and simple ratio was more accurate than that estimated from air temperature alone. Overall, the difference in GPP between on-years and off-years and its underlying mechanisms can be used to accurately estimate carbon fluxes in Moso forest and predict carbon fluxes under future climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315

    Article  Google Scholar 

  • Baldocchi D, Chu H, Reichstein M (2018) Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agric For Meteorol 249:520–533

    Article  Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Chang Biol 13:561–576

    Article  Google Scholar 

  • Blanken PD, Black TA, Neumann HH, Den Hartog G, Yang PC, Nesic Z, Staebler R, Chen W, Novak MD (1998) Turbulence flux measurements above and below the overstory of a boreal aspen forest. Bound Layer Meteorol 89:109–140

    Article  Google Scholar 

  • Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Glob Chang Biol 6:709–725

    Article  Google Scholar 

  • Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162

    Article  Google Scholar 

  • Chen W, Chen J, Liu J, Cihlar J (2000) Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochem Cycles 14:827–838

    Article  CAS  Google Scholar 

  • Chen XG, Zhang XQ, Zhang YP, Booth T, He XH (2009) Changes of carbon stocks in bamboo stands in China during 100 years. For Ecol Manag 258:1489–1496

    Article  Google Scholar 

  • Chen S, Jiang H, Cai Z, Zhou X, Peng C (2018) The response of the net primary production of moso bamboo forest to the on and off-year management: a case study in Anji county, Zhejiang, China. For Ecol Manag 409:1–7

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Seasonal patterns of tropical forest leaf area index and CO2 exchange. J Geophys Res 113:G00B06. https://doi.org/10.1029/2007JG000590

    Article  CAS  Google Scholar 

  • Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana. USA Glob Chang Biol 17:886–897

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.1016/s0264-8377(03)00003-6

    Book  Google Scholar 

  • Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32:L08403. https://doi.org/10.1029/2005GL022688

    Article  CAS  Google Scholar 

  • Gitelson AA, Viña A, Verma SB, Rundquist DC, Arkebauer TJ, Keydan G, Leavitt B, Ciganda V, Burba GG, Suyker AE (2006) Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. J Geophys Res 111:D08S11. https://doi.org/10.1029/2005JD006017

    Article  Google Scholar 

  • Gitelson AA, Wardlow BD, Keydan GP, Leavitt B (2007) Evaluation of MODIS 250-m data for green LAI estimation in crops. Geophys Res Lett 34:L20403. https://doi.org/10.1029/2007GL031620

    Article  Google Scholar 

  • Gitelson AA, Peng Y, Arkebauer TJ, Schepers J (2014) Relationships between gross primary production, green lai, and canopy chlorophyll content in maize: implications for remote sensing of primary production. Remote Sens Environ 144:65–72

    Article  Google Scholar 

  • Gitelson AA, Peng Y, Arkebauer TJ, Suyker AE (2015) Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production. J Plant Physiol 177:100–109

    Article  CAS  PubMed  Google Scholar 

  • Gratani L, Crescente MF, Varone L, Fabrini ED (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84

    Article  Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochem Cycles 14:1109–1121

    Article  CAS  Google Scholar 

  • Gu CY (2013) Satellite-based retrieval of canopy parameters of Moso bamboo forest with PROSAIL radiative transfer model. Zhejiang A&F University, Hangzhou (in Chinese)

    Google Scholar 

  • Hilker T, Galvão LS, Aragão LEOC, de Moura YM, do Amaral CH, Lyapustin AI, Wu J, Albert LP, Ferreira MJ, Anderson LO, dos Santos VAHF, Prohaska N, Tribuzy E, Ceron JVB, Saleska SR, Wang Y, de Carvalho Goncalves JF, de Oliveira Junior RC, Rodrigues JVFC, Garcia MN (2017) Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. Int J Appl Earth Obs 5:8278–8287

    Google Scholar 

  • Hmimina G, Dufrêne E, Pontailler J-Y, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival J-M, Rambal S, Saint André L, Soudani K (2013) Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens Environ 132:145–158

    Article  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  CAS  Google Scholar 

  • Hu YB (2011) Effects of fertilizations on leaf characteristics and photosynthesis character during the shoot period to deciduous period of Phyllostarchys pubescens. Zhejiang A&F University, Hangzhou (in Chinese)

    Google Scholar 

  • Huang Q, Yang D, Gao A, Shen Y, Qiu G, Long S, Beadle C, Hall D, Scurlock J (1989) Research on photosynthesis of bamboo. Bamboo Res 8:8–18 (in Chinese)

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Hui D, Luo Y, Katul G (2003) Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change. Tree Physiol 23(7):433–442

    Article  PubMed  Google Scholar 

  • Hwayne P, Frank AB, Sanabria J, Phillips RL (2008) Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. Glob Chang Biol 14:1620–1632

    Article  Google Scholar 

  • Kleinhenz V, Midmore DJ (2001) Aspects of bamboo agronomy. Adv Agron 74:99–153

    Article  CAS  Google Scholar 

  • Kleinhenz V, Milne J, Walsh KB, Midmore DJ (2003) A case study on the effects of irrigation and fertilization on soil water and soil nutrient status, and on growth and yield of bamboo (Phyllostachys pubescens) shoots. J Bamboo Rattan 2:281–293

    Article  Google Scholar 

  • Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K (2012) Canopy conductance for a moso bamboo (Phyllostachys pubescens) forest in western japan. Agric For Meteorol 156:111–120

    Article  Google Scholar 

  • Law B, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw U, Thorgeirsson KT, Valentini H, Verma R, Vesalaa S, Wilson T, Wofsy KS (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Li R, Werger MJA, During HJ, Zhong ZC (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecol 135:103–112

    Article  Google Scholar 

  • Li R, Werger MJA, During HJ, Zhong ZC (1999) Biomass distribution in a grove of the giant bamboo Phyllostachys pubescens in Chongqing. China Flora 149:86–96

    Google Scholar 

  • Li P, Zhou G, Du H, Lu D, Mo L, Xu X, Shi Y, Zhou Y (2015) Current and potential carbon stocks in Moso bamboo forests in China. J Environ Manage 156:89–96

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wu C, Peng D, Wang S, Gonsamo A, Fang B, Yuan W (2017) Improved modeling of gross primary production from a better representation of photosynthetic components in vegetation canopy. Agric For Meteorol 233:222–234

    Article  Google Scholar 

  • Lou YP, Li YX, Buckingham K, Henley G, Zhou GM (2010) Bamboo and climate change mitigation. Technical report—International Network for Bamboo and Rattan (INBAR)

  • Ma X, Huete A, Yu Q, Coupe NR, Davies K, Mark B, Ratana P, Beringer J, Hutley LB, Cleverly J, Boulain N, Eamus D (2013) Spatial patterns and temporal dynamics in savanna vegetationphenology across the north Australian tropical transect. Remote Sens Environ 139:97–115

    Article  Google Scholar 

  • Mao F, Li P, Zhou G, Du H, Xu X, Shi Y, Mo L, Zhou Y, Tu G (2016) Development of the BIOME-BGC model for the simulation of managed moso bamboo forest ecosystems. J Environ Manage 172:29–39

    Article  PubMed  Google Scholar 

  • Mao F, Du H, Zhou G, Li X, Xu X, Li P, Sun S (2017) Coupled LAI assimilation and BEPS model for analyzing the spatiotemporal pattern and heterogeneity of carbon fluxes of the bamboo forest in Zhejiang province, China. Agric For Meteorol 242:96–108

    Article  Google Scholar 

  • Melaas EK, Richardson AD, Friedl MA, Dragoni D, Gough CM, Herbst M, Montagnani L, Moors E (2013) Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems. Agric For Meteorol 171:46–56

    Article  Google Scholar 

  • Nakaji T, Kosugi Y, Takanashi S, Niiyama K, Noguchi S, Tani M, Oguma H, Nik AR, Kassim AR (2014) Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at pasoh, peninsular malaysia. Remote Sens Environ 150(7):82–92

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583

    Article  CAS  Google Scholar 

  • Qiu F (1984) The on-year and off-year of Phyllostachys pubescens forests and their control. J Bamboo Res 3:62–69 (in Chinese)

    Google Scholar 

  • Qiu GX, Shen KS, Li DY, Wang ZW, Huang QM, Yang DD, Gao AX (1992) Bamboo in subtropical eastern China. In: Long SP, Jones MB, Roberts MJ (eds) Primary production of grass ecosystems of the tropics and subtropics. Chapman and Hall, London, pp 159–188

    Google Scholar 

  • Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys Res Lett 32:L19404. https://doi.org/10.1029/2005GL024127

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Chang Biol 13:788–803

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger W, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forest. Tree Physiol 29:321–331

    Article  CAS  PubMed  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem processmodel for other biomes, BIOME-BGC, and an application for global-scalemodels. In: Scaling physiological processes: leaf to globe. Academic, New York, pp 141–158

    Chapter  Google Scholar 

  • Shanmughavel P, Anburaj A, Hemalatha S, Francis K (1997) Biochemical characteristics of plantation bamboo (bambusa bambos) leaf with reference to organic productivity. J Trop For Sci 9(4):558–560

    Google Scholar 

  • Shao J, Zhou X, He H, Yu G, Wang H, Luo Y, Chen J, Gu L, Li B (2014) Partitioning climatic and biotic effects on interannual variability of ecosystem carbon exchange in three ecosystems. Ecosystems 17(7):1186–1201

    Article  CAS  Google Scholar 

  • Shi H, Li L, Eamus D, Huete A, Cleverly J, Tian X, Yu Q, Wang S, Montagnani L, Magliulo V, Rotenberg E, Pavelka M, Carrara A (2017) Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types. Ecol Indic 72:153–164

    Article  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2006) On the use of modis EVI to assess gross primary productivity of north American ecosystems. J Geophys Res Biogeosci 111(G4):695–702

    Article  CAS  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112:1633–1646

    Article  Google Scholar 

  • Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19(1):418–428

    Article  CAS  Google Scholar 

  • Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C (2016) Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of moso bamboo (phyllostachys heterocycla). Sci Rep 6:25908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Chen X, Zhou G, Jiang H, Peng C (2017) Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agric For Meteorol 247:467–475

    Article  Google Scholar 

  • Tang X, Li H, Xu X, Luo J, Li X, Ding Z, Xie J (2016) Potential of MODIS data to track the variability in ecosystem water-use efficiency of temperate deciduous forests. Ecol Eng 91:381–391

    Article  Google Scholar 

  • Teklemariam TA, Lafleur PM, Moore TR, Roulet NT, Humphreys ER (2010) The direct and indirect effects of inter-annual meteorological variability on ecosystem carbon dioxide exchange at a temperate ombrotrophic bog. Agric For Meteorol 150:1402–1411

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Ueyama M, Iwata H, Harazono Y (2014) Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Glob Change Biol 20:1161–1173

    Article  Google Scholar 

  • Verma M, Friedl MA, Richardson AD, Kiely G, Cescattim A, Law BE, Wohlfahrt G, Gielen B, Roupsard O, Moors EJ, Toscano P, Vaccari FP, Gianelle D, Bohrer G, Varlagin A, Buchmann N, van Gorsel E, Montagnani L, Propastin P (2014) Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile dataset. Biogeosciences 11(8):2185–2200

    Article  Google Scholar 

  • Viña A, Gitelson AA, Rundquist DC, Keydan G, Leavitt B, Schepers J (2004) Monitoring maize (Zea mays L.) phenology with remote sensing. Agron J 96:1139–1147

    Article  Google Scholar 

  • Wagle P, Xiao X, Scott RL, Kolb TE, Cook DR, Brunsell N, Baldocchi DD, Basara J, Matamala R, Zhou Y, Bajgain R (2015) Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the united states. Agric For Meteorol S215–S215(2):293–305

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorolog Soc 106:85–100

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Lay Meteorol 99:127–150

    Article  Google Scholar 

  • Wu C, Chen JM, Huang N (2011) Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sens Environ 115(12):3424–3435

    Article  Google Scholar 

  • Wu C, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken PD (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr 22:994–1006

    Article  Google Scholar 

  • Wu C, Gonsamo A, Gough CM, Chen JM, Xu S (2014) Modeling growing season phenology in north american forests using seasonal mean vegetation indices from modis. Remote Sens Environ 147(18):79–88

    Article  Google Scholar 

  • Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark SC, Christoffersen B, Prohaska N, Tavares JV, Marostica S, Kobayashi H, Ferreira ML, Campos KS, Da Silva R, Brando PM, Saleska SR (2016) Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351(6276):972–977

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore III, Ojima B, D (2004) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270

    Article  Google Scholar 

  • Xiao X, Zhang Q, Hollinger D, Aber J, Moore III, B (2005) Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecol Appl 15(3):954–969

    Article  Google Scholar 

  • Xiao J, Zhuang Q, Baldocchi DD, Law BE, Richardson AD, Chen J, Oren R, Starr G, Noormets A, Ma S, Verma SB, Wharton S, Wofsy SC, Bolstad PV, Burns SP, Cook DR, Curtis PS, Drake BG, Falk M, Fischer ML, Foster DR, Gu L, Hadley JL, Hollinger DY, Katul GG, Litvak M, Martin TA, Matamala R, McNulty S, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw U, Schmid KT, Scott HP, Sun R, Suyker G, Torn AE (2008) Estimation of net ecosystem carbon exchange for theconterminous United States by combining MODIS and AmeriFlux data. Agric For Meteorol 148(11):1827–1847

    Article  Google Scholar 

  • Xu X, Zhou G, Liu S, Du HQ, Mo LF, Shi YJ, Jiang H, Zhou YF, Liu EB (2013) Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. Agric For Meteorol 177:35–45

    Article  Google Scholar 

  • Xu L, Shi Y, Zhou G, Xu X, Liu E, Zhou Y, Zhang F, Li C, Fang H, Chen L (2018a) Structural development and carbon dynamics of moso bamboo forests in Zhejiang province, China. For Ecol Manag 409:479–488

    Article  Google Scholar 

  • Xu X, Du H, Zhou G, Mao F, Li X, Zhu D, Li Y, Cui L (2018b) Remote estimation of canopy leaf area index and chlorophyll content in moso bamboo (Phyllostachys edulis, (carrière) j. houz.) forest using MODIS reflectance data. Ann For Sci 75(1):33

    Article  Google Scholar 

  • Yang DD, Huang QM, Gao AX (1988) Changes of bamboo leaf Pn at different positions in the canopy. For Res 1:217–223

    Google Scholar 

  • Yen TM (2016) Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot Stud 57:1–9

    Article  Google Scholar 

  • Yen TM, Lee. J-S (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For Ecol Manag 261:995–1002

    Article  Google Scholar 

  • Yuan W, Luo Y, Richardson AD, Oren R, Luyssaert S, Janssens IA, Ceuleman R, Zhou X, Grünwald T, Aubinet M, Berhofer C, Baldocchi DD, Chen J, Dunn AL, Deforest JL, Dragoni D, Goldstein AH, Moors E, Munger JW, Monson RK, Suyker AE, Star G, Scott RL, Tenhunen J, Verma SB, Vesala T, Wofsy SC (2009) Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Glob Chang Biol 15:2905–2920

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943

    Article  CAS  PubMed  Google Scholar 

  • Zhou BZ, Fu MY, Xie JZ, Yang XS, Li ZC (2005) Ecological functions of bamboo forest: research and application. J Forestry Res 16(2):143–147

    Article  Google Scholar 

  • Zhou G, Jiang P, Mo L (2009) Bamboo: a possible approach to the control of global warming. Int J Nonlinear Sci Num 10:547–555

    CAS  Google Scholar 

  • Zhou B, Li Z, Wang X, Cao Y, An Y, Deng Z, Letu G, Wang G, Gu L (2011a) Impact of the 2008 ice storm on moso bamboo plantations in southeast China. J Geophys Res Biogeosci. https://doi.org/10.1029/2009JG001234

    Article  Google Scholar 

  • Zhou GM, Xu XJ, Du HQ, Ge HL, Shi YJ, Zhou YF (2011b) Estimating aboveground carbon of Moso bamboo forests using the k nearest neighbors technique and satellite imagery. Photogramm Eng Rem S 77(11):1123–1131

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 31500520, 31870619, 31670644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Kajimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhou, G., Du, H. et al. Biotic and abiotic influences on monthly variation in carbon fluxes in on-year and off-year Moso bamboo forest. Trees 33, 153–169 (2019). https://doi.org/10.1007/s00468-018-1765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1765-1

Keywords

Navigation