Skip to main content

Advertisement

Log in

Modelling individual tree height–diameter relationships for multi-layered and multi-species forests in central Europe

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The proposed height–diameter model applicable to many tree species in the multi-layered and mixed stands across Czech Republic shows a high accuracy in the height prediction. This model can be useful for estimating forest yield and biomass, and simulation of the vertical stand structures.

Abstract

We developed a generalized nonlinear mixed-effects height–diameter (H–D) model applicable to Norway spruce (Picea abies (L.) Karst.), European beech (Fagus sylvatica L.) and other conifer and broadleaved tree species using the modelling method that includes dummy variables accounting for species-specific height differences and random component accounting for within- and between-sample plot height differences and randomness in the data. We used two large datasets: the first set (model fitting dataset) originated from permanent research sample plots and second set (model-testing dataset) originated from the Czech national forest inventory (NFI) sample plots. The former dataset comprises 224 sample plots with 29,390 trees and the latter dataset comprises 14,903 sample plots with 382,540 trees, each representing wide variabilities of tree size, ecological zone, growth condition, stand structure and development stage, and management regime across the country. Among the four versatile growth functions evaluated as base functions with diameter at breast height (DBH) included as a single predictor, the Chapman-Richards function showed the most attractive fit statistics. This function was then extended through the integration of other predictor variables, which better describe the stand density (stand basal area), stand development and site quality (dominant height), competition (ratio of DBH to quadratic mean DBH), that would act as modifiers of the original parameters of the function. The mixed-effects H–D model described a large part of the variations in the H–D relationships (\(R_{{{\text{adj}}}}^{2}\) = 0.9182; RMSE = 2.7786) without substantial trends in the residuals. Testing this model against model-testing dataset confirmed the model’s high accuracy. The model may be used for estimating forest yield and biomass, and therefore will serve as an important tool for decision making in forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adame P, del Rio M, Canellas I (2008) A mixed nonlinear height–diameter model for Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag 256:88–98

    Article  Google Scholar 

  • Adamec Z (2015) Comparison of linear mixed effects model and generalized model of the tree height–diameter relationship. J For Sci 61:439–447

    Article  Google Scholar 

  • Adamec Z, Drápela K (2015) Generalized additive models as an alternative approach to the modelling of the tree height–diameter relationship. J For Sci 61:235–243

    Article  Google Scholar 

  • Akaike H (1972) A new look at statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  Google Scholar 

  • Bollandsås OM, Næsset E (2009) Weibull models for single-tree increment of Norway spruce, Scots pine, birch and other broadleaves in Norway. Scand J For Res 24:54–66

    Article  Google Scholar 

  • Borders BE (1989) Systems of equations in forest stand modeling. For Sci 35:548–556

    Google Scholar 

  • Burkhart H, Tomé M (2012) Modeling forest trees and stands. Springer, 471 p

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Calama R, Montero G (2004) Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can J For Res 34:150–163

    Article  Google Scholar 

  • Carmean WH, Lenthall DJ (1989) Height-growth and site-index curves for jack pine in north central Ontario. Can J For Res 19:215–224

    Article  Google Scholar 

  • Castedo-Dorado F, Anta MB, Parresol BR, Gonzalez JGA (2005) A stochastic height–diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann For Sci 62:455–465

    Article  Google Scholar 

  • Castedo-Dorado F, Dieguez-Aranda U, Anta MB, Rodriguez MS, von Gadow K (2006) A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. For Ecol Manag 229:202–213

    Article  Google Scholar 

  • Chapman DG (1961) Statistical problems in dynamics of exploited fisheries populations. Neyman J (ed) Proceedings of 4th Berkeley Symposium on mathematical statistics and probability, Berkeley, Vol. 4, pp 153–168

  • Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York, 333 p

    Google Scholar 

  • Crecente-Campo F, Tomé M, Soares P, Dieguez-Aranda U (2010) A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. For Ecol Manag 259:943–952

    Article  Google Scholar 

  • Duan G, Gao Z, Wang Q, Fu L (2018) Comparison of different height–diameter modelling techniques for prediction of site productivity in natural uneven-aged pure stands. Forests 9:63

    Article  Google Scholar 

  • Eerikainen K (2003) Predicting the height–diameter pattern of planted Pinus kesiya stands in Zambia and Zimbabwe. For Ecol Manag 175:355–366

    Article  Google Scholar 

  • Eerikäinen K (2009) A multivariate linear mixed-effects model for the generalization of sample tree heights and crown ratios in the Finnish National Forest Inventory. For Sci 55:480–493

    Google Scholar 

  • Fang Z, Bailey RL (1998) Height–diameter models for tropical forests on Hainan Island in southern China. For Ecol Manag 110:315–327

    Article  Google Scholar 

  • FMI (2003) Inventarizace lesů, Metodika venkovního sběru dat [Forest inventory, field data collection methodology]. Brandýs nad Labem, 136 p

  • FMI (2007) National Forest Inventory in the Czech Republic 2001–2004; Introduction, methods, results. Brandýs nad Labem, 224 p

  • Fu L, Sun H, Sharma RP, Lei Y, Zhang H, Tang S (2013) Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. For Ecol Manag 302:210–220

    Article  Google Scholar 

  • Fu L, Sharma RP, Hao K, Tang S (2017a) A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. For Ecol Manag 389:364–373

    Article  Google Scholar 

  • Fu L, Sharma RP, Wang G, Tang S (2017b) Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China. For Ecol Manag 386:71–80

    Article  Google Scholar 

  • Fu L, Zhang H, Sharma RP, Pang L, Wang G (2017c) A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China. For Ecol Manag 384:34–43

    Article  Google Scholar 

  • Fu L, Li X, Sharma RP (2018) Comparing height–age and height–diameter modelling approaches for estimating site productivity of natural uneven-aged forests. Forestry 91(4):419–433

    Article  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York, 445 p

    Book  Google Scholar 

  • Goelz JCG, Burk TE (1992) Development of a well-behaved site index equation-Jack pine in north central Ontario. Can J For Res 22:776–784

    Article  Google Scholar 

  • Gregoire TG, Schabenberger O, Barrett JP (1995) Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J For Res 25:137–156

    Article  Google Scholar 

  • Hasenauer H, Monserud RA (1996) A crown ratio model for Austrian forests. For Ecol Manag 84:49–60

    Article  Google Scholar 

  • Huang S, Titus SJ (1994) An age-independent individual tree height prediction model for boreal spruce-aspen stands in Alberta. Can J For Res 24:1295–1301

    Article  Google Scholar 

  • Huang S, Price D, Titus J S (2000) Development of ecoregion-based height–diameter models for white spruce in boreal forests. For Ecol Manag 129:125–141

    Article  Google Scholar 

  • Huang S, Meng SX, Yang Y (2009) Using nonlinear mixed model technique to determine the optimal tree height prediciton model for black spruce. Modern Appl Sci 3:3–18

    Google Scholar 

  • Huuskonen S, Miina J (2007) Stand-level growth models for young Scots pine stands in Finland. For Ecol Manag 241:49–61

    Article  Google Scholar 

  • Kangas AS (1998) Effect of errors-in-variables on coefficients of a growth model and on prediction of growth. For Ecol Manag 102:203–212

    Article  Google Scholar 

  • Kučera M (2016) Výstupy NIL2—Zastoupení dřevin a věková struktura Lesa [Outputs of NIL2—representation of tree species and the age structure of forest]. In: Vašíček J, Skála V (eds): XIX. Sněm lesníků. Národní inventarizace lesů 2, Hradec Králové, 37–53

  • Lawrence M, McRoberts RE, Tomppo E, Gschwantner T, Gabler K (2010) Comparisons of national forest inventories. In: National forest inventories: pathways for common reporting. Springer Netherlands, Dordrecht, pp 19–32

    Chapter  Google Scholar 

  • Lei Y, Parresol BR (2001) Remarks on height–diameter modelling. In: Research Note SRS-10. USDA Forest Service, Southern Research Station, Asheville

    Google Scholar 

  • Li Y, Deng X, Huang Z, Xiang W, Yan W, Lei P, Zhou X, Peng C (2015) Development and evaluation of models for the relationship between tree height and diameter at breast height for Chinese-Fir plantations in subtropical China. PLoS One 10, e0125118

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute, Cary, 814

    Google Scholar 

  • Liu M, Feng Z, Zhang Z, Ma C, Wang M, Lian B-l, Sun R, Zhang L (2017) Development and evaluation of height diameter at breast models for native Chinese Metasequoia. PLoS One 12:e0182170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPhee C, Kershaw JA, Weiskittel AR, Golding J, Lavigne MB (2018) Comparison of approaches for estimating individual tree height–diameter relationships in the Acadian forest region. For Int J For Res 91:132–146

    Google Scholar 

  • Mehtatalo L (2005) Height–diameter models for Scots pine and birch in Finland. Silva Fennica 39:55–66

    Article  Google Scholar 

  • Mehtätalo L, de-Miguel S, Gregoire TG (2015) Modeling height–diameter curves for prediction. Can J For Res 45:826–837

    Article  Google Scholar 

  • Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manag 80:57–80

    Article  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2001) ‘Introduction to linear regression analysis. Wiley, New York, 641 p

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nanos N, Calama R, Montero G, Gil L (2004) Geostatistical prediction of height/diameter models. For Ecol Manag 195:221–235

    Article  Google Scholar 

  • Omule SAY (1980) Personal bias in forest measurements. The Forestry Chronicle 56:222–224

    Article  Google Scholar 

  • Paulo JA, Tomé J, Tomé M (2011) Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Ann For Sci 68:295–309

    Article  Google Scholar 

  • Peng C (2001) Developing and validating nonlinear height–diameter models for major tree species of Ontario’s boreal forest. North J Appl For 18:87–94

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Rencher AC, Schaalje GB (2008) Linear models in statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Robinson AP, Wykoff WR (2004) Imputing missing height measures using a mixed-effects modeling strategy. Can J For Res 34:2492–2500

    Article  Google Scholar 

  • SAS Institute Inc (2012) SAS/ETS1 9.1.3 User’s Guide. SAS Institute Inc., Cary

    Google Scholar 

  • Saud P, Lynch TB, KC A, Guldin JM (2016) Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry 89:215–229

    Article  Google Scholar 

  • Schmidt M, Kiviste A, von Gadow K (2011) A spatially explicit height–diameter model for Scots pine in Estonia. Eur J Forest Res 130:303–315

    Article  Google Scholar 

  • Schnute J (1981) A Versatile Growth Model with Statistically Stable Parameters. Can J Fish Aquat Sci 38:1128–1140

    Article  Google Scholar 

  • Sharma RP, Breidenbach J (2015) Modeling height–diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. For Sci Technol 11:44–53

    Google Scholar 

  • Sharma RP, Brunner A (2017) Modeling individual tree height growth of Norway spruce and Scots pine from national forest inventory data in Norway. Scand J For Res 32:501–514

    Article  Google Scholar 

  • Sharma M, Parton J (2007) Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For Ecol Manag 249:187–198

    Article  Google Scholar 

  • Sharma M, Zhang SY (2004) Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scand J For Res 19:442–451

    Article  Google Scholar 

  • Sharma RP, Brunner A, Eid T, Øyen B-H (2011) Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. For Ecol Manag 262:2162–2175

    Article  Google Scholar 

  • Sharma RP, Brunner A, Eid T (2012) Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scand J For Res 27:619–636

    Article  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S (2016a) Individual tree crown width models for Norway spruce and European beech in Czech Republic. For Ecol Manag 366:208–220

    Article  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S (2016b) Nonlinear mixed effect height–diameter model for mixed species forests in the central part of the Czech Republic. J For Sci 62:470–484

    Article  Google Scholar 

  • Sharma RP, Vacek Zk, Vacek S (2016c) Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees 30:1969–1982

    Article  Google Scholar 

  • Sharma RP, Bíllek L, Vacek Z, Vacek S (2017a) Modelling crown widtH–Diameter relationship for Scots pine in the central Europe. Trees 31:1875–1889

    Article  CAS  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S (2017b) Modelling tree crown-to-bole diameter ratio for Norway spruce and European beech. Silva Fennica 51(5):article id 1740

    Article  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S, Jansa V (2017c) Modelling individual tree diameter growth for Norway spruce in Czech Republic using generalized algebraic difference approach. J For Sci 63:227–238

    Article  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S, Podrázský V, Jansa V (2017d) Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). PLoS One 12:e0186394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short EA III, Burkhart H (1992) Prediction crown-height increment for thinned and unthinned loblolly pine plantations. For Sci 38:594–610

    Google Scholar 

  • Šmelko ŠS, Merganič J (2008) Some methodological aspects of the national forest inventory and monitoring in Slovakia. J For Sci 54:476–483

    Article  Google Scholar 

  • Soares P, Tomé M (2001) A tree crown ratio prediction equation for eucalypt plantations. Ann For Sci 58:193–202

    Article  Google Scholar 

  • Temesgen H, Gadow KV (2004) Generalized height–diameter models: an application for major tree species in complex stands of interior British Columbia. Eur J Forest Res 123:45–51

    Article  Google Scholar 

  • Temesgen H, Monleon VJ, Hann DW (2008) Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Can J For Res 38:553–565

    Article  Google Scholar 

  • Temesgen H, Zhang CH, Zhao XH (2014) Modelling tree height–diameter relationships in multi-species and multi-layered forests: a large observational study from Northeast China. For Ecol Manag 316:78–89

    Article  Google Scholar 

  • Tewari VP, Kishan Kumar VS (2002) Development of top height model and site index curves for Azadirachta indica A. juss. For Ecol Manag 165:67–73

    Article  Google Scholar 

  • Trincado G, VanderSchaaf CL, Burkhart HE (2007) Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. Eur J For Res 126:253–262

    Article  Google Scholar 

  • Uzoh FCC, Oliver WW (2008) Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. For Ecol Manag 256:438–445

    Article  Google Scholar 

  • Vacek S, Bílek L, Schwarz O, Hejcmanová P, Mikeska M (2013) Effect of air pollution on the health status of Spruce stands. Mt Res Dev 33:40–50

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bilek L, Simon J, Remeš J, Hůnová I, Král J, Putalova T, Mikeska M (2016) Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica 50(4):1564

    Article  Google Scholar 

  • Vanclay JK (1994) Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, Oxon, 312 p

    Google Scholar 

  • Vargas-Larreta B, Castedo-Dorado F, Alvarez-Gonzalez JG, Barrio-Anta M, Cruz-Cobos F (2009) A generalized height–diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). For Int J For Res 82:445–462

    Google Scholar 

  • Vonesh EF, Chinchilli VM (1997) Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker Inc., New York, 560 p

    Google Scholar 

  • West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Ecol Manag 7:207–224

    Article  Google Scholar 

  • Yang RC, Kozak A, Smith JHG (1978) The potential of Weibull-type functions as flexible growth curves. Can J For Res 8:424–431

    Article  Google Scholar 

  • Zeide B (1989) Accuracy of equations describing diameter growth. Can J For Res 19:1283–1286

    Article  Google Scholar 

  • Zhang L (1997) Cross-validation of non-linear growth functions for modelling tree height–diameter relationships. Ann Bot 79:251–257

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Czech Ministry of Agriculture (No. QJ1520037), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (IGA No. B2018, B0318, and Excellent Output 2018), and EXTEMIT-k project (No. CZ.02.1.01/0.0/0.0/15_003/0000433). We thank two anonymous reviewers for their constructive comments and insightful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Ram Sharma: conceptualized and designed the study, performed data analysis and modelling, and wrote and revised the manuscript; Zdeněk Vacek: contributed to data descriptions and produced study area maps, and worked for revision, Stanislav Vacek: provided training dataset and contributed to the manuscript improvement. Miloš Kučera: provided validation dataset and contributed to the manuscript improvement.

Corresponding author

Correspondence to Ram P. Sharma.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Communicated by Priesack.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Vacek, Z., Vacek, S. et al. Modelling individual tree height–diameter relationships for multi-layered and multi-species forests in central Europe. Trees 33, 103–119 (2019). https://doi.org/10.1007/s00468-018-1762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1762-4

Keywords

Navigation