Advertisement

Trees

, Volume 32, Issue 6, pp 1695–1705 | Cite as

Genome-wide identification and characterization of growth-regulating factors in mulberry (Morus spp.)

  • M. S. Rukmangada
  • R. Sumathy
  • V. Sivaprasad
  • V. Girish NaikEmail author
Original Article
  • 98 Downloads
Part of the following topical collections:
  1. Functional Genomics

Abstract

Key message

Mulberry GRFs (MnGRFs) were identified from draft genome sequence of Morus notabilis by genome-wide analysis. The expression analysis of MnGRFs was studied in a contrasting set of genotypes for growth.

Abstract

Growth-regulating factors (GRFs) are multigene family of plants which encode putative transcription factors and play vital role in regulating growth and development. GRF genes of Arabidopsis, rice, maize, Chinese cabbage, etc., have been well characterized but, in mulberry they have not been so far explored. Mulberry growth is the key determinant in leaf yield and is the only source of nutrition for silk-producing insect—Bombyx mori L. In this study, we report ten mulberry-specific GRFs (MnGRFs) identified from the draft genome sequence of Morus notabilis by genome-wide analysis. The MnGRFs contained GRF-specific domains, i.e., QLQ (Glu, Leu, Glu) and WRC (Trp, Arg, Cys) in their N-terminal and Pro, Gln, His, Ala/Gly, Ser/Thr, acidic amino acid residues in C-terminal region. The phylogenetic and motif structure analysis showed that MnGRFs have higher similarity to Arabidopsis and Chinese cabbage (dicots) than rice (monocot). Expression analysis of MnGRFs was undertaken in young leaves of ten contrasting genotypes for growth and observed a significant difference in the transcript levels of MnGRF 1, MnGRF 7 and MnGRF 8 with higher expression in high growth than the low growth genotypes. It is inferred that MnGRFs have an important role in growth and development of immature and young leaves of mulberry contributing to the leaf yield. Furthermore, the study provides a basis for investigation into the function of MnGRF proteins in leaf development and molecular basis for crop improvement.

Keywords

Mulberry Growth-regulating factor Genome-wide analysis qPCR 

Notes

Acknowledgements

We would like to thank Dr. K. M. Ponnuvel, Scientist-D and Head, SeriBiotech Research Laboratory (SBRL), Bengaluru, for providing an opportunity to utilize the lab facilities for qPCR along with valuable suggestions. Further, the authors thank Ms. Tania Gupta, JRF, for assistance in the qPCR assay.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2018_1744_MOESM1_ESM.doc (146 kb)
Supplementary material 1 (DOC 146 KB)

References

  1. Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208.  https://doi.org/10.1093/nar/gkp335 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bao M, Bian H, Zha Y, Li F et al (2014) miR396a-mediated basic helix–loop–helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol 55(7):1343–1353.  https://doi.org/10.1093/pcp/pcu058 CrossRefPubMedGoogle Scholar
  3. Choi D, Jeong HK, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45:897–904.  https://doi.org/10.1093/pcp/pch098 CrossRefPubMedGoogle Scholar
  4. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefGoogle Scholar
  5. Danyluk J, Kane NA, Breton G et al (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132(4):1849–1860.  https://doi.org/10.1104/pp.103.023523 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763.  https://doi.org/10.1093/bioinformatics/14.9.755 CrossRefPubMedGoogle Scholar
  7. Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51:419–435.  https://doi.org/10.1023/B:GRES.0000023458.60138.79 CrossRefGoogle Scholar
  8. Filiz E, Koç I, Tombuloǧlu H (2014) Genome-wide identification and analysis of growth regulating factor genes in Brachypodium distachyon: in silico approaches. Turk J Biol 38:296–306.  https://doi.org/10.3906/biy-1308-57 CrossRefGoogle Scholar
  9. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230.  https://doi.org/10.1093/nar/gkt1223 CrossRefPubMedGoogle Scholar
  10. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  11. He N, Zhang C, Zi X et al (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 4:2445.  https://doi.org/10.1038/ncomms3445 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159(1):321–335.  https://doi.org/10.1104/pp.112.193649 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43(1):68–78.  https://doi.org/10.1111/j.1365-313X.2005.02429.x CrossRefPubMedGoogle Scholar
  14. Hu L, Liu S (2011) Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet Mol Biol 34(4):624–633.  https://doi.org/10.1590/S1415-47572011005000054 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jeong HK, Byung HL (2006) GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol 49(6):463–468CrossRefGoogle Scholar
  16. Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101(36):13374–13379.  https://doi.org/10.1073/pnas.0405450101 CrossRefPubMedGoogle Scholar
  17. Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36(1):94–104.  https://doi.org/10.1046/j.1365-313X.2003.01862.x CrossRefPubMedGoogle Scholar
  18. Kim JS, Mizoi J, Kidokoro S, Maruyama K et al (2012) Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24(8):3393–3405.  https://doi.org/10.1105/tpc.112.100933 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kuijt SJH, Greco R, Agalou A et al (2014) Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors. Plant Physiol 164:1952–1966.  https://doi.org/10.1104/pp.113.222836 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li YC, Korol AB et al (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21(6):991–1007.  https://doi.org/10.1093/molbev/msh073 CrossRefPubMedGoogle Scholar
  21. Li T, Qi X, Zeng Q et al (2014) MorusDB: a resource for mulberry genomics and genome biology. Database.  https://doi.org/10.1093/database/bau054 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liang G, He H, Li Y et al (2014) Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164:249–258.  https://doi.org/10.1104/pp.113.225144 CrossRefPubMedGoogle Scholar
  23. Martinez M (2011) Plant protein-coding gene families: emerging bioinformatics approaches. Trends Plant Sci 16:558–567.  https://doi.org/10.1016/j.tplants.2011.06.003 CrossRefPubMedGoogle Scholar
  24. Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8:998–1010.  https://doi.org/10.1016/j.molp.2015.01.013 CrossRefPubMedGoogle Scholar
  25. Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG et al (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827.  https://doi.org/10.1093/nar/gkp805 CrossRefPubMedGoogle Scholar
  26. Ramanjulu S, Veeranjaneyulu K, Sudhakar C (1994) Sprouting and rooting of mulberry, Morus Alba L. Var. Mysore local cuttings under NaCL salinity. Indian J Sericult 33(1):86–88Google Scholar
  27. Raventos D, Skriver K, Schlein M et al (1998) HRT, a novel zinc finger, transcriptional repressor from barley. J Biol Chem 273(36):23313–23320CrossRefGoogle Scholar
  28. Rukmangada MS, Ramasamy S, Sivaprasad V, Varkody GN (2018) Growth performance in contrasting sets of mulberry (Morus Spp.) genotypes explained by logistic and linear regression models using morphological and gas exchange parameters. Sci Hortic 235:53–61.  https://doi.org/10.1016/j.scienta.2017.12.040 CrossRefGoogle Scholar
  29. Sajeevan RS, Shivanna MB, Nataraja KN (2014) An efficient protocol for total RNA isolation from healthy and stressed tissues of mulberry (Morus spp.) and other species. Am J Plant Sci 5:2057–2065.  https://doi.org/10.4236/ajps.2014.513221 CrossRefGoogle Scholar
  30. Sanchez MD (2002) Mulberry: an exceptional forage available almost worldwide. In: Sanchez MD (ed) Mulberry for animal production. Food and Agriculture Organization (FAO) of United Nations, pp 271–289Google Scholar
  31. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefGoogle Scholar
  32. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thangavelu K, Mukherjee P, Tikader A et al (1997) Catalogue on mulberry (Morus spp.) germplasm, vol 1. Silkworm and Mulberry Germplasm Station, HosurGoogle Scholar
  35. Thangavelu K, Tikader A, Ramesh SR et al (2000) Catalogue on mulberry (Morus spp.) germplasm, vol 2. Silkworm and Mulberry Germplasm Station, HosurGoogle Scholar
  36. Tikader A, Kamble CK (2008) Mulberry wild species in India and their use in crop improvement—a review. Aust J Crop Sci 2(2):64–72Google Scholar
  37. Tikader A, Chandrasekhar M, Borpuzari MM et al (2006) Catalogue on mulberry (Morus Spp.) germplasm, vols 3 and 4. CSGRC, HosurGoogle Scholar
  38. Treich I, Cairns BR, de los Santos T et al (1995) SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol Cell Biol 15(8):4240–4248.  https://doi.org/10.1128/MCB.15.8.4240 CrossRefPubMedPubMedCentralGoogle Scholar
  39. van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122(3):695–704.  https://doi.org/10.1104/pp.122.3.695 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: Features and applications. Trends Biotechnol 23(1):48–55.  https://doi.org/10.1016/j.tibtech.2004.11.005 CrossRefGoogle Scholar
  41. Wang Y, Xiang L, Wang C et al (2013) Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 8(7):e71144.  https://doi.org/10.1371/journal.pone.0071144 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang F, Qiu N, Ding Q et al (2014) Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom 15:807.  https://doi.org/10.1186/1471-2164-15-807 CrossRefGoogle Scholar
  43. Wu L, Zhang D, Xue M et al (2014) Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. J Integr Plant Biol 56(11):1053–1063.  https://doi.org/10.1111/jipb.12220 CrossRefPubMedGoogle Scholar
  44. Xu G, Guo C, Shan H, Kong H (2012) Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci 109(4):1187–1192.  https://doi.org/10.1073/pnas.1109047109 CrossRefPubMedGoogle Scholar
  45. Zhang DF, Li B, Jia GQ et al (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175:809–817.  https://doi.org/10.1016/j.plantsci.2008.08.0002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Rukmangada
    • 1
  • R. Sumathy
    • 2
  • V. Sivaprasad
    • 1
    • 2
  • V. Girish Naik
    • 3
    Email author
  1. 1.Molecular Biology Laboratory-1Central Sericultural Research and Training InstituteMysuruIndia
  2. 2.Bioinformatics CentreCentral Sericultural Research and Training InstituteMysoreIndia
  3. 3.Regional Sericultural Research StationCentral Silk Board, Govt. of IndiaChamarajanagarIndia

Personalised recommendations