Skip to main content
Log in

How softwood tree branches are attached to stems: hierarchical extension of Shigo’s stem–branch model

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The main achievement of this study is an extension of the existing model of Shigo of the branch–stem junction of coniferous trees by introducing the concept of a sacrificial tissue. This tissue is acting as a predetermined breaking point between branch and stem, and limits fracture and damage to a small and isolated zone within the tree.

Abstract

Shigo developed a macroscopic model of the fibre structure in the vicinity of a branch–stem junction of coniferous trees to explain special physiological functions of the junction. However, abrupt changes in the cell orientations at the vertex of the branch observed on fracture surfaces and micro-cuts of the branch–stem junction interphase demand an extension of the existing model. The recent introduction of the concept of a sacrificial tissue, formed in the upper region of the branch–stem interface, brings more insights into the hierarchical junction microstructure and its mechanical and biological functions. Beyond a critical load, the sacrificial tissue serves as a predetermined crack path of zig–zag morphology originating from the stepwise distribution of transversally loaded cells at the junction. The hierarchical branch–stem junction microstructure, however, secures the stem and branch physiological functions, even when the crack opening is formed along the channel of the sacrificial tissue. Moreover, after the removal of the load, complete closure of the crack can be observed, which is explained by the release of the elastic energy stored in cells of the bent branch with high microfibril angle. The self-repair mechanism of the living branch is based on covering the crack by cell division of a sound cambium in combination with resin deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Böhlmann D (1970a) Anatomisch-histologische Untersuchungen im Bereich der Astabzweigung bei Nadel- und Laubbäumen. I. Die Verhältnisse im Abzweigungsbereich der Langtriebe von Nadelbäumen. Allg For Jagdztg 141(7):134–140

    Google Scholar 

  • Böhlmann D (1970b) Anatomisch-histologische Untersuchungen im Bereich der Astabzweigung bei Nadel- und Laubbäumen. IV. Die Abzweigungsverhältnisse bei Juglans, Fraxinus, Betula und Fagus und ihre Zuordnung zu Abzweigungstypen. Allg For Jagdztg 141(12):245–250

    Google Scholar 

  • Buksnowitz C, Teischinger A, Grabner M, Müller U, Mahn L (2010) Tracheid length in Norway spruce (Picea abies (L.) Karst.) analysis of three databases regarding tree age, cambial age, tree height, inter-annual variation, radial distance to pith and log qualities. Wood Res 55(4):1–13

    Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz—Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, New York

    Book  Google Scholar 

  • Fahn A, Zamski E (1970) The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation in Pinus halepensis wood. Isr J Bot 19:429–446

    CAS  Google Scholar 

  • Färber J, Lichtenegger HC, Reiterer A, Stanzl-Tschegg S, Fratzl P (2001) Cellulose microfibril angles in a spruce branch and mechanical implications. J Mater Sci 36:5087–5092

    Article  Google Scholar 

  • Fink G, Kohler J (2011) Multiscale variability of stiffness properties of timber boards. In: Applications of statistics and probability in civil engineering—ICASP 11. Taylor & Francis, London, pp 1369–1376

    Chapter  Google Scholar 

  • Hu M, Briggert A, Olsson A, Johansson M, Oscarsson J, Sa H (2018) Growth layer and fibre orientation around knots in Norway spruce: a laboratory investigation. Wood Sci Technol 52:7–27

    Article  CAS  Google Scholar 

  • Jenkel C, Kaliske M (2014) Finite element analysis of timber containing branches—an approach to model the grain course and the influence on the structural behaviour. Eng Struct 75(15):237–247

    Article  Google Scholar 

  • Jungnikl K, Goebbels J, Burgert I, Fratzl P (2009) The role of material properties for the mechanical adaptation at branch junctions. Trees Struct Funct 23:605–610

    Article  Google Scholar 

  • Kandler G, Lukacevic M, Füssl J (2016) An algorithm for the geometric reconstruction of knots within timber boards based on fibre angle measurements. Constr Build Mater 124(15):945–960

    Article  Google Scholar 

  • Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129(6):1109–1118

    Article  Google Scholar 

  • Li X, Yang X, Wu HX (2013) Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genom 14:768

    Article  CAS  Google Scholar 

  • Lukacevic M, Füssl J, Lampert R (2015) Failure mechanisms of clear wood identified at wood cell level by an approach based on the extended finite element method. Eng Fract Mech 144:158–175

    Article  Google Scholar 

  • Lukacevic M, Lederer W, Füssl J (2017) A microstructure-based multisurface failure criterion for the description of brittle and ductile failure mechanisms of clear-wood. Eng Fract Mech 176:83–99

    Article  Google Scholar 

  • Mattheck C (1998) Design in nature—learning from trees. Springer, Berlin

    Google Scholar 

  • Mattheck C, Bethge K (1998) The structural optimization of trees. Naturwissenschaften 85:1–10

    Article  CAS  Google Scholar 

  • Mattheck C, Kubler H (1997) Wood—the internal optimization of trees. Springer, Berlin

    Book  Google Scholar 

  • Meierhofer U (1976) Der Ast als qualitätsbeeinflussendes Strukturmerkmal. Bulletin 4/2. Schweizer Arbeitsgemeinschaft für Holz, Lignum, Zürich

    Google Scholar 

  • Müller U, Gindl W, Jeronimidis G (2006) Biomechanics of a branch–Stem junction in softwood. Trees Struct Funct 20:643–648

    Article  Google Scholar 

  • Müller U, Gindl-Altmutter W, Konnerth J, Maier GA, Keckes J (2015) Synergy of multi-scale toughening and protective mechanisms at hierarchical branch–stem interfaces. Sci Rep. https://doi.org/10.1038/srep14522

    Article  PubMed  PubMed Central  Google Scholar 

  • Neely D (1991) Water transport at stem–branch junctures in woody angiosperms. J Arboric 17(11):285–290

    Google Scholar 

  • Oscarsson J, Olsson A, Enquist B (2012) Strain fields around knots in Norway spruce specimens exposed to tensile forces. Wood Sci Technol 46:593–610

    Article  CAS  Google Scholar 

  • Reuschel JD (1999) Untersuchungen der Faserandordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode. Dissertation. Forschungszentrum Karlsruhe GmbH, Karlsruhe

  • Shigo AL (1985) How tree branches are attached to trunks. Can J Bot 63:1391–1401

    Article  Google Scholar 

  • Shigo AL (1990) A new tree biology. Thalacker, Braunschweig

    Google Scholar 

  • Slater D, Ennos R (2013) Determining the mechanical properties of hazel forks by testing their component parts. Trees 27:1515–1524

    Article  Google Scholar 

  • Slater D, Ennos R (2015a) The level of occlusion of included bark affects the strength of bifurcations in Hazel (Corylus avellana L.). Arboric Urban For 41(4):194–207

    Google Scholar 

  • Slater D, Ennos R (2015b) Interlocking wood grain patterns provide improved wood strength properties in forks of hazel (Corylus avellana L.). Arboric J 37(1):21–32

    Article  Google Scholar 

  • Slater D, Harbinson C (2010) Towards a new model of branch attachment. Arboric J 33(2):95–105

    Article  Google Scholar 

  • Sorce C, Giovannelli A, Sebastiani L, Anfodillo T (2013) Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep 32:885–898

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Book  Google Scholar 

  • Trendelenburg R (1955) Das Holz als Rohstoff. Carl Hanser Verlag, München

    Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng C 31(6):1164–1173

    Article  CAS  Google Scholar 

  • Wimmer R, Grabner M (1997) Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst.). Trees 11:271–276

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Lukas Graf for microscopy laboratory work and Alexander Stadlmann for providing young spruce wood trees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Grote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, U., Gindl-Altmutter, W. & Keckes, J. How softwood tree branches are attached to stems: hierarchical extension of Shigo’s stem–branch model. Trees 32, 1113–1121 (2018). https://doi.org/10.1007/s00468-018-1699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1699-7

Keywords

Navigation