Trees

pp 1–10 | Cite as

Shadows of the edge effects for tropical emergent trees: the impact of lianas on the growth of Aspidosperma polyneuron

  • Milena Godoy-Veiga
  • Gregório Ceccantini
  • Philipp Pitsch
  • Stefan Krottenthaler
  • Dieter Anhuf
  • Giuliano Maselli Locosselli
Original Article
  • 81 Downloads

Abstract

Key message

Forest edge impacts emergent trees growth by reducing the number of growth releases. This reduction seems to be related with lianas infestation found at the forest edge.

Abstract

Deforestation in tropical regions is raising fragmentation to alarming levels. Not only does it lead to losses of forest area, but also the abiotic and biotic changes on forest edge areas alter the development of the remaining trees. We aimed to assess the impacts of forest fragmentation on the growth of tropical emergent trees. We sampled the endangered species Aspidosperma polyneuron (Apocynaceae) at forest edge and interior in the highly fragmented Brazilian Atlantic Forest. We obtained increment cores of each tree along with data about tree and surrounding canopy heights, plus their current levels of liana infestation. We used tree-ring analyses to estimate age and growth rate of trees. Sampled trees and surrounding canopy were taller at the forest interior than at the edge, even though both sampled populations have similar ages. Overall, trees at forest interior show a lifetime growth pattern common to shade-tolerant species, with a peak of growth rate at 120 years. Indeed, all sampled trees exhibited this pattern before fragmentation. However, trees at forest edge presented constantly slow growth rates for all diameter classes after the fragmentation event. The strong presence of lianas at forest edge prevents trees from experiencing the expected growth releases throughout their lifetime, probably by keeping the leaves of A. polyneuron under shaded conditions. Therefore, the management of lianas at the forest edge is likely the most effective procedure to ensure the growth of emergent trees, guarantying their role on forests structure, carbon storage, and ecosystem functioning.

Keywords

Disturbance Atlantic Forest Fragmentation Growth release Lianas Tree rings 

Notes

Acknowledgements

We thank Paula J. Alécio for helping in field sampling and in all wood preparation processes, tool maintenance, and field work organization. We also thank Luciano Fiorotto, Lucas Nascimento, and João Amaral for their collaboration during field work, and other colleagues who gave support during the project development, such as Luíza Teixeira-Costa, Natalia Altobelli, and Plácido Buarque. We also thank Instituto Florestal do Estado de São Paulo and COTEC for grating the sampling license. Funding for this project was provided by São Paulo Research Foundation—FAPESP (2015/09329-0). Giuliano Locosselli also thanks the São Paulo Research Foundation (2015/25511-3). Philipp Pitsch and Stefan Krottenthaler were founded by German Research Foundation (DFG AN214/10-1, DFG AN 214/10-2). Gregório Ceccantini was founded by CNPq (307041/2014-0).

Author contributions

MGV, GML, and GC designed the research; MGV collected the data; MGV, GML, GC, PP, SK, and DA analyzed and interpreted the data; GML and MGV led the writing of the manuscript. All authors contributed to the drafts and gave final approval for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2018_1696_MOESM1_ESM.xlsx (93 kb)
Supplementary material 1 (XLSX 93 KB)
468_2018_1696_MOESM2_ESM.docx (1 mb)
Supplementary material 2 (DOCX 1075 KB)

References

  1. Altman J, Fibich P, Dolezal J, Aakala T (2014) TRADER: A package for tree ring analysis of disturbance events in R. Dendrochronologia 32:107–112CrossRefGoogle Scholar
  2. Alvira D, Pütz FE, Fredericken TS (2004) Liana loads and post-logging liana densities after liana cutting in a lowland forest in Bolívia. For Ecol Manage 190:73–86CrossRefGoogle Scholar
  3. Boninsegna JA, Villalba R, Amarilla L, Ocampo J (1989) Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA Bull 10(2):161–169CrossRefGoogle Scholar
  4. Brandes AFN, Lisi CS, Barros CF (2011) Dendrochronology of lianas of Leguminosae family from the Atlantic Forest, Brazil. Trees 25:133–144CrossRefGoogle Scholar
  5. Brienen RJW, Zuidema PA, Martínez-Ramos M (2009) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163:485–496CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. Tree Physiol 6:439–461CrossRefGoogle Scholar
  7. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Cons 141:1745–1757CrossRefGoogle Scholar
  8. Brodie J, Post E, Laurance WF (2012) Climate change and tropical biodiversity: a new tool. Trends Ecol Evol 27(3):145–150CrossRefPubMedGoogle Scholar
  9. Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923CrossRefGoogle Scholar
  10. Bruna ME, Fiske IJ, Trager MD (2009) Habitat fragmentation and plant populations: is what we know demographically irrelevant? J Veg Sci 20:569–576CrossRefGoogle Scholar
  11. Câmara IG (2003) Brief history of conservation in the Atlantic Forest. In: The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. CABS and Island Press, Washington, pp 31–42Google Scholar
  12. Carvalho PER (2004) Peroba Rosa, Aspidosperma polyneuron. Colombo-PR. Circular Técnica N. 96 EMBRAPAGoogle Scholar
  13. Chagas RK, Durigan D, Contieri WA, Saito M (2004) Crescimento diametral de espécies arbóreas em floresta estacional semidecidual ao longo de seis anos. Pesquisas em conservação e recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão. Páginas e Letras, São PauloGoogle Scholar
  14. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49(4):288–297CrossRefGoogle Scholar
  15. Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331CrossRefGoogle Scholar
  16. Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rainforest. Ecol Monogr 62:315–344CrossRefGoogle Scholar
  17. Copenheaver CA, Kyle KH, Stevens GN, Kamp MH (2005) Comparing Juniperus Virginia tree-ring chronologies from forest edge vs. forest interior positions in the Cedars Natural Area Preserve in Virginia, USA. Dendrochronologia 23:39–45CrossRefGoogle Scholar
  18. Dantas PM, Alves Costa CP, Tabarelli M (2011) Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop Conserv Sci 4(3):349–358CrossRefGoogle Scholar
  19. Dean W (1996) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. University of California Press, CaliforniaGoogle Scholar
  20. Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28(10):605–613CrossRefPubMedGoogle Scholar
  21. Durigan G, Franco GADC., Saito M, Baitello JB (2000) Estrutura e diversidade do componente arbóreo da floresta na Estação Ecológica dos Caetetus, Gália, SP. Rev Brasileira de Bot 23(4):371–383CrossRefGoogle Scholar
  22. Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12:108–111CrossRefPubMedGoogle Scholar
  23. Farah FT, Rodrigues RR, Santos FAM, Tamashiro JY, Shepherd GJ, Siqueira T, Batista JLF, Manly BJF (2014) Forest destructuring as revealed by the temporal dynamics of fundamental species—Case study of Santa Genebra Forest in Brazil. Ecol Ind 37:40–44CrossRefGoogle Scholar
  24. Ferreira L (2002) Periodicidade do crescimento e formação da madeira de algumas espécies arbóreas de florestas estacionais semidecíduas da região sudeste do estado de São Paulo. Escola Superior de Agricultura “Luiz de Queiroz”. Universidade de São Paulo, PiracicabaGoogle Scholar
  25. Gerwing JJ (2001) Testing liana cutting and controlled burning as silvicultural treatments for a logged forest in the eastern Amazon. J Appl Ecol 38:1264–1276CrossRefGoogle Scholar
  26. Grauel WT, Pütz FE (2004) Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. For Ecol Manage 190:99–108CrossRefGoogle Scholar
  27. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853CrossRefPubMedGoogle Scholar
  29. Hietz P (2011) A simple program to measure and analyze tree rings using Excel, R and SigmaScan. Dendrochronologia 29:245–250CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887CrossRefGoogle Scholar
  31. Jímenez AMB (2017) Dinámica del crecimiento y relación con el clima de especies arbóreas de los bosques de la región Caribe, Colombia. Universidad Nacional de Colombia, Instituto de Ciencias Naturales Bogotá, ColombiaGoogle Scholar
  32. Júnior AA (2014) Estrutura populacional e dendroecologia de Araucaria angustifólia (Bertol.) Kuntze em diferentes condições de crescimento no Parque Nacional do Iguaçu/PR: interior e borda de floresta natural. Dissertação apresentada para obtenção do título de Mestre. Universidade Federal do Paraná, CuritibaGoogle Scholar
  33. Kainer KA, Wadt LHO, Gomes-Silva DAP, Capanu M (2006) Liana loads and their association with Bertholletia excels fruit and nut production, diameter growth and crown attributes. J Trop Ecol 22:147–154CrossRefGoogle Scholar
  34. Krottenthaler S, Pitsch P, Helle G, Locosselli GM, Ceccantini G, Altman J, Svoboda M, Dolezal J, Scheleser G, Anhuf D (2015) A power-driven increment borer for sampling high-density tropical wood. Dendrochronologia 36:40–44CrossRefGoogle Scholar
  35. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Cons 55:77–92CrossRefGoogle Scholar
  36. Laurance WF, Ferreira LV, Rankin de Merona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79:2032–2040CrossRefGoogle Scholar
  37. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836CrossRefPubMedGoogle Scholar
  38. Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG (2014) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95(6):1604–1611CrossRefPubMedGoogle Scholar
  39. Lindenmayer DB, Laurence WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306CrossRefPubMedGoogle Scholar
  40. Lisi SL, Tomazello M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous Forest in southeast Brazil. IAWA J 29(2):189–207CrossRefGoogle Scholar
  41. Locosselli GM, Buckeridge MS (2017) Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees. Trees Struct Funct 31:1754–1758CrossRefGoogle Scholar
  42. Locosselli GM, Krottenthaler S, Pitsch P, Anhuf D, Ceccantini GC (2017) Age and growth rate of congeneric tree species (Hymenaea spp.–Leguminosae) Inhabiting different tropical biomes. Erdkunde 71(1):45–57CrossRefGoogle Scholar
  43. Longhi-Santos T (2017) Dendroecologia de Aspidosperma polyneuron Müll. Arg. em duas condições geomorfológicas no sul do Brasil. Universidade Federal do Paraná, CuritibaGoogle Scholar
  44. Lorenzi H (2014) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. vol 1, 6ª Edição. Instituto Plantarum de Estudos da Flora, São PauloGoogle Scholar
  45. MacDonlad RI, Urban DL (2004) Forest edges and tree growth rates in the North Carolina Piedmont. Ecology 85(8):2258–2266CrossRefGoogle Scholar
  46. Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, Pardini R (2009) Time-lag biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Cons 142:1166–1177CrossRefGoogle Scholar
  47. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefPubMedGoogle Scholar
  48. Nowacki GJ, Abrams MD (1997) Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol Monogr 67:225–249Google Scholar
  49. Oliveira MA, Santos AMM, Tabarelli M (2008) Profound impoverishment of the largetree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manage 256:1910–1917CrossRefGoogle Scholar
  50. Pérez-Salicrup D, Barker MG (2000) Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia 124:469–475CrossRefPubMedGoogle Scholar
  51. Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detecting long-term growth trends using tree rings: a critical evaluation of the methods. Glob Change Biol 21:2040–2054CrossRefGoogle Scholar
  52. Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774CrossRefPubMedGoogle Scholar
  53. Pitsch P, Krottenthaler S, Locosselli GM, Altman J, Neuwirth B, Ceccantini GCT (2017) On the suitability of Cariniana Estrellensis (Raddi) Kuntze for dendroclimatic studies: the problem of Chronology building and trends in lifetime growth trajectories. Erdkunde 71(1):59–75CrossRefGoogle Scholar
  54. Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model 222:1986–1997CrossRefGoogle Scholar
  55. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  56. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  57. Rozendaal AMD, Zuidema AP (2011) Dendroecology in the tropics: a review. Trees 25:3–16CrossRefGoogle Scholar
  58. Santos BA, Peres CA, Oliveira MA, Grillo A, lves-Costa CP, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260CrossRefGoogle Scholar
  59. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  61. Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanism. Ecol Lett 14:397–406CrossRefPubMedGoogle Scholar
  62. Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 849–857Google Scholar
  63. Schnitzer SA, Kuzee M, Bongers F (2005) Disentangling above-and belowground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125CrossRefGoogle Scholar
  64. Schöngart J, Bräuning A, Barbosa ACMC., Lisi CS, Oliveira JM (2017) Dendroecological studies in the Neotropics - history, status and future challenges.  https://doi.org/10.1007/978-3-319-61669-8$43
  65. Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Kluwer, DordrechtGoogle Scholar
  66. Sentelhas PC, Destefani ACC, Santos EA, Marin FR, Pardi MM, Muniz MRA, Lima RAF, Gandolfi S (2005) Parte II—Fatores Abióticos. Clima. Relatório Científico do Projeto Parcelas PermanentesGoogle Scholar
  67. Sfair JC, Ribeiro BR, Pimenta EP, Gonçalves T, Ramos FN (2013) A importância da luz na ocupação de árvores por lianas. Rodriguésia 64(2):255–261CrossRefGoogle Scholar
  68. Sleen P, Grownendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015) No growth stimulation on tropical trees by 150 years of CO2 fertilization but water-use efficiecy increased. Nat Geosci 8:24–28CrossRefGoogle Scholar
  69. Swaine MD, Hall JB, Alexander IJ (1987) Tree population dynamics at Kade, Ghana (1968–1982). J Trop Ecol 3:331–345CrossRefGoogle Scholar
  70. Tabanez MF, Durigan G, Keuroghlian A, Barbosa AF, Freitas CA, Silva CEF, Silva DA, Eaton DP, Brisolla G et al. (2005) Plano de Manejo da Estação Ecológica dos Caetetus, vol 29. Instituto Florestal, São Paulo, pp 1–103Google Scholar
  71. Tabarelli M, Silva JMC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425CrossRefGoogle Scholar
  72. Torezan JMD, Souza RF, Ruas PM, Ruas CF, Camargo EH, Vanzela ALL (2005) Genetic Variability of Pre and Post-Fragmentation Cohorts of Aspidosperma polyneuron Muell. Arg (Apocynaceae) Braz Arch Biol Technol 48(2):171–180CrossRefGoogle Scholar
  73. Van der Meer PJ, Bongers F (1996) Patterns of tree-fall and branch-fall in a tropical forest in French Guiana. J Ecol 84:19–29CrossRefGoogle Scholar
  74. Vidal E, Viana V, Batista JLF (2002) Crescimento de floresta tropical três anos após colheita de madeira com e sem manejo florestal na Amazônia oriental. Sci For 61:133–143Google Scholar
  75. Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer, New YorkCrossRefGoogle Scholar
  76. Williams M (2003) Deforesting the Earth: from prehistory to global crisis. University of Chicago Press, Chicago, p 715Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany, Institute of BiosciencesUniverstiy of São PauloSão PauloBrazil
  2. 2.Department of Physical GeographyUniversity of PassauPassauGermany

Personalised recommendations