, Volume 32, Issue 2, pp 497–510 | Cite as

Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit

  • Enrique G. de la RivaEmail author
  • Rafael Villar
  • Ignacio M. Pérez-Ramos
  • José Luis Quero
  • Luis Matías
  • Lourens Poorter
  • Teodoro Marañón
Original Article


Key message

This study reinforces the existence of the leaf economics spectrum in Mediterranean woody species, and demonstrates the strong influence of phylogeny, leaf habit and environmental context as main drivers of variability in structural and nutrient traits of leaves.


Leaf structural and nutrient traits are key attributes of plant ecological strategies, as these traits are related to resource-use strategies and plant growth. However, leaf structure and nutrient composition can vary among different habitats, leaf habits or phylogenetic groups. In this study, we measured 13 leaf traits (one structural—leaf mass per area, LMA—and 12 nutrient traits) in 98 Mediterranean woody species growing over a wide range of environmental conditions, with the final aim of discerning the main causes of leaf trait variability. The variance decomposition results show that phylogeny, leaf habit and habitat type affected in several ways the structural and nutrient traits studied. Leaf nutrient concentrations are strongly positively correlated amongst themselves, and negatively correlated with LMA, in accordance with the “leaf economics spectrum”. We found that leaf habit and phylogeny were important causes of variation in LMA and in a broad number of leaf nutrients (i.e., C, N, Mg, S, K), while other micronutrients seemed to be more dependent on the environment (i.e., Cu and Mn). In summary, our study reinforces the existence of the leaf economics spectrum in a broad pool of Mediterranean woody species, and demonstrates the strong influence of phylogeny, leaf habit and environmental context as the main drivers of variability in some leaf structural and nutrient traits.


Functional traits Leaf economics spectrum Nitrogen Phosphorus Phylogenetic independent contrast (PIC) Stoichiometry 



We thank C. Navarro-Fernández, M. Olmo, C. Aponte, M. Domínguez and A. Herrero for their help in the sampling and processing of leaves. Dr. David Walker revised the English. This study was funded by the Spanish MEC coordinated project DIVERBOS (CGL2011-30285-C02-01 and C02-02), the Andalusian ANASINQUE project (PGC2010-RNM-5782), the Life + Biodehesa Project (11/BIO/ES/000726), ECO-MEDIT (CGL2014-53236-R), RESTECO (CGL2014-52858-R) and European FEDER funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2017_1646_MOESM1_ESM.docx (563 kb)
Supplementary material 1 (DOCX 563 KB)


  1. Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. ‎Annu Rev Ecol Evol 39:153–170CrossRefGoogle Scholar
  2. Antúnez I, Retamosa EC, Villar R (2001) Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 128:172–180CrossRefPubMedGoogle Scholar
  3. Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, Martinez P (2014) Amazonian functional diversity from forest canopy chemical assembly. PNAS 111:5604–5609CrossRefPubMedPubMedCentralGoogle Scholar
  4. Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J Veg Sci 24:419–428CrossRefGoogle Scholar
  5. Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15CrossRefPubMedGoogle Scholar
  6. Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy—metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  7. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  8. Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant (No. 205)Google Scholar
  9. Chen FS, Niklas KJ, Zeng DH (2011) Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant Soil 340:337–345CrossRefGoogle Scholar
  10. Ciccarelli D, Picciarelli P, Bedini G, Sorce C (2016) Mediterranean sea cliff plants: morphological and physiological responses to environmental conditions. J Plant Ecol 9:153–164CrossRefGoogle Scholar
  11. Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  12. de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016a) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PloS One 11:e0148788CrossRefPubMedPubMedCentralGoogle Scholar
  13. de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NP, Villar R (2016b) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199CrossRefGoogle Scholar
  14. de la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R (2016c) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–363CrossRefGoogle Scholar
  15. de la Riva EG, Marañon T, Violle C, Villar R, Pérez-Ramos IM (2017) Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Front Plant Sci. Google Scholar
  16. Delgado-Baquerizo M, Maestre FT, Gallardo A et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676CrossRefPubMedGoogle Scholar
  17. Díaz S, Kattge J, Cornelissen JH et al (2016) The global spectrum of plant form and function. Nature 529(7585):167–171CrossRefPubMedGoogle Scholar
  18. Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2010) Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water Air Soil Pollut 205:305–321CrossRefGoogle Scholar
  19. Domínguez MT, Aponte C, Pérez-Ramos IM, García LV, Villar R, Marañón T (2012) Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357:407–424CrossRefGoogle Scholar
  20. Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use-efficiency of Hibiscus rosasinensis at three potassium concentrations. Photosynthetica 43:135–140CrossRefGoogle Scholar
  21. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefPubMedGoogle Scholar
  22. European Commission (2013) Interpretation manual of European Union Habitats—EUR28Google Scholar
  23. Funk JL, Cornwell WK (2013) Leaf traits within communities: context may affect the mapping of traits to function. Ecology 94:1893–1897CrossRefPubMedGoogle Scholar
  24. Fyllas NM, Patino S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708CrossRefGoogle Scholar
  25. Gelman A, Hill J (2006) Data analysis using regression and multi- level/hierarchical models. Cambridge University Press, Cambridge, p 648CrossRefGoogle Scholar
  26. Gower JC (1963) Variance component estimation for unbalanced hierarchical classifications. Biometrics 18:537–542CrossRefGoogle Scholar
  27. Grubb PJ, Marañón T, Pugnaire FI, Sack L (2015) Relationships between specific leaf area and leaf composition in succulent and non-succulent species of contrasting semi-desert communities in south-eastern Spain. J Arid Environ 118:69–83CrossRefGoogle Scholar
  28. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  29. Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796CrossRefPubMedGoogle Scholar
  30. Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059CrossRefPubMedGoogle Scholar
  31. Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113CrossRefPubMedGoogle Scholar
  32. Jenny H (1950) Causes if the high nitrogen and organic matter content of certain tropical forest soils. Soil Sci 69:63–69CrossRefGoogle Scholar
  33. Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460CrossRefPubMedGoogle Scholar
  34. Koerselman W, Meuleman AFM (1994) Groeibeperkende voedingsstoffen in verschillende typen duinvalleien; resultaten van bemestingsexperimenten. Kiwa N.V. Research and Consultancy, NieuwegeinGoogle Scholar
  35. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18CrossRefGoogle Scholar
  37. Lefcheck JS (2015) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579CrossRefGoogle Scholar
  38. Marañón T, Navarro-Fernández CM, Domínguez MT, Madejón P, Murillo JM (2015) How the soil chemical composition is affected by seven tree species planted at a contaminated and remediated site. Web Ecol 15:45–48CrossRefGoogle Scholar
  39. Mayland HF (1990) Magnesium in plants: uptake, distribution, function, and utilization by man and animals. Metal ions in biological systems: volume 26: compendium on magnesium and its role in biology: nutrition and physiology, pp 26–33Google Scholar
  40. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  41. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848CrossRefPubMedGoogle Scholar
  42. Navarro-Fernández CM, Pérez-Ramos IM, de la Riva EG et al (2016) Functional responses of Mediterranean plant communities to soil resource heterogeneity: a mycorrhizal trait-based approach. J Veg Sci 27:1243–1253. CrossRefGoogle Scholar
  43. Niinemets Ü, Kull K (2003) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol 24:209–219CrossRefGoogle Scholar
  44. Niinemets U, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. Progress Bot 67:385–419Google Scholar
  45. Pärtel M, Laanisto L, Zobel M (2007) Constructing plant productivity–diversity relationships across latitude: the role of evolutionary history. Ecology 88:1091–1097CrossRefPubMedGoogle Scholar
  46. Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol J Ecol 56:613–622Google Scholar
  47. Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234CrossRefGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. R package version 3.1–121.
  49. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743CrossRefPubMedGoogle Scholar
  50. Poorter H, de Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction cost of field plants from 15 habitats differing in productivity. New Phytol 143:163–176CrossRefGoogle Scholar
  51. Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559CrossRefPubMedGoogle Scholar
  52. Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72CrossRefGoogle Scholar
  53. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588CrossRefPubMedGoogle Scholar
  54. Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798CrossRefPubMedGoogle Scholar
  55. R Development Core Team R (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 31 Jan 2011
  56. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–11006CrossRefPubMedPubMedCentralGoogle Scholar
  57. Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392CrossRefGoogle Scholar
  58. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. PNAS 94:13730–13734CrossRefPubMedPubMedCentralGoogle Scholar
  59. Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relation- ships: a test across six habitats. Ecology 80:1955–1969CrossRefGoogle Scholar
  60. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B 277:877–883CrossRefPubMedGoogle Scholar
  61. Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723CrossRefGoogle Scholar
  62. Sardans J, Peñuelas J (2015) Trees increase their P:N ratio with size. Glob Ecol Biogeogr 24:147–156CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecol Manag 262:2024–2034CrossRefGoogle Scholar
  64. Sardans J, Janssens IA, Alonso R et al (2015) Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob Ecol Biogeogr 24:240–255CrossRefGoogle Scholar
  65. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  66. Tilman D (1997) Mechanisms of plant competition. Plant ecology, Second edn. Blackwell Science, OxfordGoogle Scholar
  67. Townsend AR, Cleveland CC, Asner GP, Bustamante M (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118CrossRefPubMedGoogle Scholar
  68. Urbina I, Sardans J, Beierkuhnlein C et al (2015) Shifts in the elemental composition of plants during a very severe drought. Environ Expl Bot 111:63–73CrossRefGoogle Scholar
  69. Verdú M, Pausas JG (2013) Syndrome driven diversification in a Mediterranean ecosystem. Evolution 67:1756–1766CrossRefPubMedGoogle Scholar
  70. Villar R, Merino JA (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151:213–226CrossRefGoogle Scholar
  71. Villar R, Ruíz-Robleto J, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643CrossRefPubMedGoogle Scholar
  72. Villar R, Ruíz-Robleto J, Ubera JL, Poorter H (2013) Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. Am J Bot 100:1969–1980CrossRefPubMedGoogle Scholar
  73. Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  74. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291CrossRefPubMedGoogle Scholar
  75. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259CrossRefGoogle Scholar
  76. Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523CrossRefPubMedGoogle Scholar
  77. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100CrossRefPubMedGoogle Scholar
  78. Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434CrossRefGoogle Scholar
  79. Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefPubMedGoogle Scholar
  80. Yu Q, Elser JJ, He N, Wu H, Chen Q, Zhang G, Han X (2011) Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166:1–10CrossRefPubMedGoogle Scholar
  81. Yuan Z, Chen HY (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542CrossRefGoogle Scholar
  82. Zhao N, Yu G, He N, Wang Q et al (2016) Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25:359–367CrossRefGoogle Scholar
  83. Zunzunegui M, Barradas MD, Ain-Lhout F, Clavijo A, Novo FG (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Enrique G. de la Riva
    • 1
    • 2
    Email author
  • Rafael Villar
    • 1
  • Ignacio M. Pérez-Ramos
    • 3
  • José Luis Quero
    • 4
  • Luis Matías
    • 3
  • Lourens Poorter
    • 5
  • Teodoro Marañón
    • 3
  1. 1.Área de Ecología, Facultad de CienciasUniversidad de CordobaCordobaSpain
  2. 2.Estación Biológica de Doñana (EBD-CSIC)SevilleSpain
  3. 3.Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, CSICSevilleSpain
  4. 4.Departamento de Ingeniería Forestal, ETSIAMUniversidad de CórdobaCórdobaSpain
  5. 5.Forest Ecology and Forest Management GroupWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations