Skip to main content
Log in

Ultrastructural changes of pistachio (Pistacia vera L.) mature seeds and pollen in relation to desiccation

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Pistachio seeds and pollen have desiccation tolerance and desiccation sensitivity ultrastructural characters at maturation, respectively. Seed cells filled with storage matter remain integrated, whereas some pollen show cell rupture.

Abstract

Maturation drying is a common trait of seeds and pollen. Orthodox seeds and pollen become tolerant to desiccation at maturation and remain their germinability in an inactive dry state for a period of time, whereas recalcitrant ones remain sensitive and must germinate immediately after maturation. This study investigated the moisture content, germinability and ultrastructure of pistachio (Pistacia vera L.) mature seeds and pollen in fresh and 24 h-desiccated states using microscopy methods. Seeds lost 90.5% water and remained 100% germinable demonstrating their orthodoxy. Fresh and desiccated cells of both cotyledon and ground meristem of root tip, mostly contained lipid and protein reserves. Large autophagic vacuoles in fresh cells contained autophagic bodies digesting organelles related to active metabolism and became converted to protein storage vacuoles at desiccated state. In ground meristem of root tip, most lipid bodies were tiered adjacent to plasma membrane probably with a secretory function and the cell walls were waved at desiccated state. Pollen lost 46.7% water along with 93% germinability by desiccation demonstrating its recalcitrance. After desiccation, 1.8% of pollen grains displayed intine degeneration, vegetative cell plasmolysis and detachment from intine, lobed vegetative cell nucleus, great vacuolation along with organelles destruction in both vegetative and generative cells and finally cell rupture. However, most pollen displayed normal structure indicating the recalcitrance behavior of pistachio pollen is not mainly related to cell structural damages but, lack of germinability through molecular damages that should be studied in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

MC:

Moisture content

LB:

Lipid body

PB:

Protein body

AV:

Autophagic vacuole

PSV:

Protein storage vacuole

VC:

Vegetative cell

GC:

Generative cell

References

  • Acar I, Kakani VG (2010) The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Sci Hortic 125:569–572

    Article  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15(4):211–218

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    Article  CAS  PubMed  Google Scholar 

  • Caccere R, Teixeira S, Centeno D, Figueiredo-Ribeiro R, Braga M (2013) Metabolic and structural changes during early maturation of Inga vera seeds are consistent with the lack of a desiccation phase. J Plant Physiol 170:791–800

    Article  CAS  PubMed  Google Scholar 

  • Chao CT, Parfitt DE (2003) Genetic analysis of phenological traits of pistachio (Pistacia vera L.). Euphytica 129:345–349

    Article  CAS  Google Scholar 

  • Cook FS, Walden DB (1965) The male gametophyte of Zea Mays L. II. In vitro germination. Can J Bot 43(7):779–786

    Article  Google Scholar 

  • del Carmen Gijon M, Gimenez C, Perez-Lopez D, Guerrero J, Couceiro JF, Moriana A (2011) Water relations of pistachio (Pistacia vera L.) as affected by phenological stages and water regimes. Sci Hortic 128:415–422

    Article  Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P, Walters C (1997) Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Sci Res 7:135–144

    Article  CAS  Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109(7):1201–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62(15):5267–5281

    Article  CAS  PubMed  Google Scholar 

  • Fransz P, de Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66:4–17

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, Hinz G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9(10):1564–1570

    Article  CAS  PubMed  Google Scholar 

  • Galili G (2004) ER-derived compartments are formed by highly regulated processes and have special functions in plants. Plant Physiol 136(3):3411–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geier T (1980) PAS-positive reaction of phenolic inclusions in plant cell vacuoles. Histochemistry 65:167–171

    Article  CAS  PubMed  Google Scholar 

  • Golovina EA, Hoekstra FA, Van Aelst AC (2001) The competence to acquire desiccation tolerance is independent of seed morphological development. J Exp Bot 52(358):1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoh B, Hinz G, Jeong BK, Robinson DG (1995) Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci 108:299–310

    CAS  PubMed  Google Scholar 

  • Hosseini N, Zamani Bahramabadi E, Rezanejad F (2015) Study of morphological and anatomical traits of male flower, developmental stages of anther and pollen grain of pistachio (Pistacia vera L.). Iran. J Biol 28(1):116–125

    Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers J (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155(6):991–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kalemba EM, Pukacka S (2012) Association of protective proteins with dehydration and desiccation of orthodox and recalcitrant category seeds of three Acer genus species. J Plant Growth Regul 31(3):351–362

    Article  CAS  Google Scholar 

  • Kater JM (1927) A cytological study of dormancy in the seed of Phaseolus vulgaris. Ann Bot (Lond) 41:629–641

    Article  Google Scholar 

  • Kersten B, Pakull B, Fladung M (2017) Genomics of sex determination in dioecious trees and woody plants. Trees Struct Funct. doi:10.1007/s00468-017-1525-7

    Google Scholar 

  • Kioko JI, Berjak P, Pammenter NW (2006) Viability and ultrastructural responses of seeds and embryonic axes of Trichilia emetic to different dehydration and storage conditions. S Afr J Bot 72:167–176

    Article  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. J Exp Bot 53(375):1699–1710

    Article  CAS  PubMed  Google Scholar 

  • Maia J, Guimaraes CC, Da Silvia EAA, Faria JMR (2016) What can cell cycle and ultrastructure tell us about desiccation tolerance in Leucaena leucocephala germinating seeds? Biol Plant 60(2):319–328

    Article  Google Scholar 

  • Martini MH, Figueira A, Lenci CG, de Queiroz Tavares D (2008) Polyphenolic cells and their interrelation with cotyledon cells in seven species of Theobroma (Sterculiaceae). Revista Brasil Bot 31(3):425–431

    Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2015) Autophagy in plants—what’s new on the menu? Trends Plant Sci. doi:10.1016/j.tplants.2015.10.008

    Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Ozden-Tokatli Y, Ozudogru EA, Gumusel F, Lambardi M (2007) Cryopreservation of Pistacia spp. Seeds by dehydration and one-step freezing. Cryoletters 28(2):83–94

    CAS  PubMed  Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt—its composition, forms and functions. Flora 200:399–415

    Article  Google Scholar 

  • Radwan A, Hara M, Kleinwächter M, Selmar D (2014) Dehydrin expression in seeds and maturation drying: a paradigm change. Plant Biol 16:853–855

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crops Res 182:30–42

    Article  Google Scholar 

  • Sazci A, Radford A, Erenler K (1986) Detection of cellulolytic funji by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J Appl Bacteriol 61:559–562

    Article  CAS  Google Scholar 

  • Schmidt EC, Pereira B, Pontes CLM, Santos R, Scherner F, Horta PA, Paula MR, Latini A, Maraschin M, Bouzon ZL (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367

    Article  CAS  PubMed  Google Scholar 

  • Shekari M, Rezanejad F (2012) Comparison of pigments content, split rate and kernel dry weight of two pistachio cultivars (Pistacia Vera L.) during fruit development. Iran J Biol 25(2):295–302

    Google Scholar 

  • Speranza A, Calzoni GL, Pacini E (1997) Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10:110–115

    Article  CAS  Google Scholar 

  • Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A (2010) Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 92:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Vaknin Y, Eisikowitch D (2000) Effects of short-term storage on germinability of pistachio pollen. Plant Breed 119:347–350

    Article  Google Scholar 

  • Van Aelst AC, Pierson ES, Van Went JL, Cresti M (1993) Ultrastructural changes of Arabidopsia thaliana pollen during final maturation and rehydration. Zygote 1(02):173–179

    Article  PubMed  Google Scholar 

  • Van der Schoot C, Paul LK, Paul SB, Rinne PLH (2011) Plant lipid bodies and cell-cell signaling. A new role for an old organelle? Plant Signal Behav 6(11):1732–1738

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn WG, Papini A (2013) Ultrastructure of autophagy in plant cells. Autophagy 9(12):1922–1936

    Article  PubMed  Google Scholar 

  • Van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M, Fransz P, Soppe WJJ (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. PNAS 108(50):20219–20224

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider P, Menard T, Arend M, Kuster TM, Gunthardt-Goerg MS (2015) Structural changes associated with drought stress symptoms in foliage of Central European oaks. Trees Struct Funct. doi:10.1007/s00468-015-1329-6

    Google Scholar 

  • Walters C (2015) Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta 242:397–406

    Article  CAS  PubMed  Google Scholar 

  • Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubov B, Barazani O, Shachach A, Rowland LJ, Shoseyov O, Golan-Goldhirsh A (2005) Cloning and expression of a dehydrin-like protein from Pistacia vera L. Trees Struct Funct 19:224–230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Zamani Bahramabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by U. Luettge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani Bahramabadi, E., Jonoubi, P. & Rezanejad, F. Ultrastructural changes of pistachio (Pistacia vera L.) mature seeds and pollen in relation to desiccation. Trees 32, 29–39 (2018). https://doi.org/10.1007/s00468-017-1606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1606-7

Keywords