Skip to main content
Log in

Stand density sensitive biomass functions for young oak trees at four different European sites

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Relative biomass of tree compartments is dependent on plant size and stand density, with stand density being an important predictor, especially for belowground biomass and at high stand densities.

Abstract

Estimation of biomass production is an important issue against the background of climate change and carbon storage. Even though many studies investigated the biomass productivity of trees or single compartments, only few considered the belowground biomass. Further, there is a lack of studies focusing on young trees and considering further influencing factors such as the prevailing stand density. In the present study, young Quercus robur trees were sampled on Nelder trials, which comprise different stand densities, on four European sites differing in climatic conditions. Besides the estimation of logarithmically transformed power equations, Dirichlet regressions were applied for deriving biomass functions for the single compartments leaves, branches, stem and roots. Thereby, the dependence of total and compartment biomass allocation on diameter at root collar (d 0), tree height and stand density is tested. The results show that besides d 0, the local Stand Density Index (SDIl) is an important predictor for biomass. Especially, the belowground biomass shows a significant relation to the SDIl, which is less the case for the aboveground biomass. Not considering the SDIl leads to an overestimation of the biomass productivity, especially when the stand density is high. Furthermore, the results show that the belowground biomass is lower than the aboveground biomass, but with 50–80% of the aboveground biomass still of considerable size. This indicates the importance of including stand characteristics when estimating above- and belowground tree biomass in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annighöfer P, Ameztegui A, Ammer C et al (2016) Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur J For Res 135:313–329. doi:10.1007/s10342-016-0937-z

    Article  Google Scholar 

  • Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27:1035–1047. doi:10.1007/s00468-013-0854-4

    Article  Google Scholar 

  • Bergès L, Dupouey J-L, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14:398–408. doi:10.1007/s004680000055

    Article  Google Scholar 

  • Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Eine Betrachtung fuer die Bundesrepublik Deutschland

  • Chojnacky DC, Heath LS, Jenkins JC (2014) Updated generalized biomass equations for North American tree species. Forestry 87:129–151. doi:10.1093/forestry/cpt053

    Article  Google Scholar 

  • Cienciala E, Apltauer J, Exnerová Z, Tatarinov F (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54:109–120

    Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above-and below-ground biomass and production of lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19:447–454

    Article  Google Scholar 

  • Core Team R (2015) A language and environment for statistical computing; 2013. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cotillas M, Espelta JM, Sánchez-Costa E, Sabaté S (2016) Aboveground and belowground biomass allocation patterns in two Mediterranean oaks with contrasting leaf habit: an insight into carbon stock in young oak coppices. Eur J For Res 135:243–252. doi:10.1007/s10342-015-0932-9

    Article  CAS  Google Scholar 

  • de Martonne E (1926) L’indice d’aridité. Bull Assoc Géographes Fr 3:3–5. doi:10.3406/bagf.1926.6321

    Article  Google Scholar 

  • Genet A, Wernsdörfer H, Jonard M et al (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. For Ecol Manag 261:1188–1202. doi:10.1016/j.foreco.2010.12.034

    Article  Google Scholar 

  • Hijazi RH, Jernigan RW (2009) Modelling compositional data using Dirichlet regression models. J Appl Probab Stat 4:77–91

    Google Scholar 

  • Kawaletz H, Molder I, Zerbe S et al (2013) Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. J Plant Ecol 6:305–315. doi:10.1093/jpe/rts044

    Article  Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605

    Article  Google Scholar 

  • Kuehne C, Kublin E, Pyttel P, Bauhus J (2013) Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments. J For Res 24:1–14. doi:10.1007/s11676-013-0320-6

    Article  CAS  Google Scholar 

  • Kuznetsova T, Tilk M, Pärn H et al (2011) Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia. Environ Monit Assess 183:341–350. doi:10.1007/s10661-011-1925-x

    Article  CAS  PubMed  Google Scholar 

  • Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2002) Above-ground biomass estimation of successional and mature forests using TM images in the amazon basin. In: Richardson DE, van Oosterom P (eds) Advances in spatial data handling: 10th international symposium on spatial data handling. Springer, Berlin, Heidelberg, pp 183–196

  • Maier M (2014) DirichletReg: Dirichlet regression for compositional data in R. Department of Statistics and Mathematics, WU Vienna University of Economics and Business, Vienna

    Google Scholar 

  • McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720. doi:10.1111/j.1365-2435.2007.01276.x

    Article  Google Scholar 

  • Nelder JA (1962) New kinds of systematic designs for spacing experiments. Biometrics 18:283. doi:10.2307/2527473

    Article  Google Scholar 

  • Pajtík J, Konôpka B, Lukac M (2008) Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For Ecol Manag 256:1096–1103. doi:10.1016/j.foreco.2008.06.013

    Article  Google Scholar 

  • Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manag 237:583–593. doi:10.1016/j.foreco.2006.10.004

    Article  Google Scholar 

  • Poudel KP, Temesgen H (2016) Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Can J For Res 46:77–87. doi:10.1139/cjfr-2015-0256

    Article  Google Scholar 

  • Pretzsch H (2010) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany 71. Springer, Berlin, Heidelberg, pp 339–369

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264. doi:10.1016/j.foreco.2014.04.027

    Article  Google Scholar 

  • Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe.pdf. Can J For Res 40:370–384. doi:10.1139/D09-195

    Article  Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Hense P (2012a) Coarse root–shoot allometry of Pinus radiata modified by site conditions in the Western Cape province of South Africa. South For J For Sci 74:237–246. doi:10.2989/20702620.2012.741794

    Google Scholar 

  • Pretzsch H, Uhl E, Biber P et al (2012b) Change of allometry between coarse root and shoot of Lodgepole pine (Pinus contorta DOUGL. ex. LOUD) along a stress gradient in the sub-boreal forest zone of British Columbia. Scand J For Res 27:532–544

    Article  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Ruiz-Peinado C-I, del Rio C-I, Montero C-I et al (2011) New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst 20:176–188. doi:10.5424/fs/2011201-11643

  • Snell O (1892) Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Eur Arch Psychiatry Clin Neurosci 23:436–446

    Google Scholar 

  • Uhl E, Biber P, Ulbricht M et al (2015) Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results. For Ecosyst. doi:10.1186/s40663-015-0041-8

    Google Scholar 

  • Vejpustková M, Zahradník D, Čihák T, Šrámek V (2015) Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J For Sci 61:45–54. doi:10.17221/100/2014-JFS

    Google Scholar 

  • Wirth C, Schumacher J, Schulze E-D (2004) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139

    Article  PubMed  Google Scholar 

  • Xue L, Jacobs DF, Zeng S et al (2012) Relationship between above-ground biomass allocation and stand density index in Populus × euramericana stands. Forestry 85:611–619. doi:10.1093/forestry/cps071

    Article  Google Scholar 

  • Zhao D, Kane M, Teskey R, Markewitz D (2016) Modeling aboveground biomass components and volume-to-weight conversion ratios for loblolly pine trees. For Sci 62:463–473. doi:10.5849/forsci.15-129

    Google Scholar 

  • Zianis D, Suomen Metsätieteellinen Seura, Metsäntutkimuslaitos (eds) (2005) Biomass and stem volume equations for tree species in Europe. Finnish Society of Forest Science, Finnish Forest Research Institute, Helsinki

Download references

Acknowledgements

We thank AUDI AG, Automobili Lamborghini S.P.A., and AUDI HUNGARIA MOTOR Kft. Thanks to the AUDI Stiftung für Umwelt for funding the project Biodiversity, productivity, and C-sequestration of oak stands (No. 5102150). We also thank the Bavarian State Ministry for Nutrition, Agriculture and Forestry for permanent support of the project W 07 Long term experimental plots for forest growth and yield research (7831-23953-2014). The included trials are located on areas under responsibility of different forest administrations. We are deeply grateful to the respective sponsoring forest administrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Dahlhausen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Additional information

Communicated by E. van der Maaten.

Appendix

Appendix

See Figs. 9, 10.

Fig. 9
figure 9

Projected biomass productivity per site (a) and relation of total to aboveground biomass (b). Solid lines represent biomass productivity estimations using d 0 and height as predictors (model 4), dashed lines represent total biomass productivity estimations using d 0, height, and SDIl as predictors (model 6) dash-dotted lines represent aboveground biomass productivity estimations using d 0 and height as predictors (model 4)

Fig. 10
figure 10

Distribution of the study locations across Europe and distribution of Q. robur according EUFORGEN (http://www.euforgen.org)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlhausen, J., Uhl, E., Heym, M. et al. Stand density sensitive biomass functions for young oak trees at four different European sites. Trees 31, 1811–1826 (2017). https://doi.org/10.1007/s00468-017-1586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1586-7

Keywords

Navigation