Skip to main content

Advertisement

Log in

Silver-fir (Abies alba MILL.) neighbors improve water relations of European beech (Fagus sylvatica L.), but do not affect N nutrition

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Water relations in the leaves of beech trees on sandstone-derived soil are supported by the presence of white fir neighbors.

Abstract

Climate extremes such as heat waves and prolonged periods of drought not only affect water relations of trees, but can also accelerate nitrogen (N) limitation under low soil N. To counteract these effects of climate change, it has been suggested to replace forest monocultures with mixed forest stands. In the present study, we tested, if water relations and N nutrition of shallow rooting and, hence, drought sensitive beech (Fagus sylvatica L.) could benefit from deep rooting and, hence, less drought sensitive silver-fir (Abies alba MILL.). Adult trees were analyzed on two forest sites stocking on different parent bedrock at different elevations. The sites differed in precipitation and total N contents in the soil, but revealed a similar soil water holding capacity. Surprisingly, analysis of root and leaf/needle bulk material revealed higher N contents in beech and fir tissues from the low compared to the high soil N site. Significant effects of silver-fir neighbors on N nutrition of beech were not observed. δ13C signatures of leaf/needle and root material served as indicators for water supply. In the leaves, but not in the roots of beech trees at the site with lower precipitation, δ13C signatures indicate improved water supply of beech in the presence of sufficient fir neighbors. Irrespective of this observation, water supply for both tree species appeared to be sufficient at both field sites despite low spring and early summer precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Assmann E (1961) Waldertragskunde. BLV Verlagsges, München

    Google Scholar 

  • Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M et al (1997) Los bosques ibéricos. Una interpretación geobotánica. 4 th. Planeta, Barcelona

  • BMEL (2014) Der Wald in Deutschland: Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Bundesministerium für Ernährung und Landwirtschaft

  • Brandes E, Kodama N, Whittaker K, Weston C, Rennenberg H, Keitel C et al (2006) Short-term variation in the isotopic composition of organic matter allocated from the leaves to the stem of Pinus sylvestris: effects of photosynthetic and postphotosynthetic carbon isotope fractionation. Glob Chang Biol 12:1922–1939

    Article  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A et al (2009) Why are non-photosyntethic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36:199–213

    Article  CAS  Google Scholar 

  • Cheng L, Fuchigami LH (2002) Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol 22:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Dannenmann M, Simon J, Gasche R, Holst J, Naumann PS, Kögel-Knabner I et al (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631

    Article  CAS  Google Scholar 

  • Dannenmann M, Bimüller C, Gschwendtner S, Leberecht M, Tejedor J, Bilela S et al (2016) Climate change impairs nitrogen cycling in European beech forests. PLoS One 11:e0158823

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis RG, Shaw MB (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. Glob Warm Biol Divers 297–308

  • Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Pinés E, Molina-Herrera S, Dannenmann M, Braun J, Haas E, Willibald G et al (2016) Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar short-rotation coppice in southern Germany. GCB Bioenergy 1–14

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  PubMed  Google Scholar 

  • Dyckmans J, Flessa H (2001) Influence of tree internal N status on uptake and translocation of C and N in beech: a dual 13C and 15N labeling approach. Tree Physiol 21:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H, Leuschner C (1996) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer. p. 1095, Stuttgart

  • Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54:45–61

    Article  PubMed  Google Scholar 

  • Falk W, Hempelmann N (2013) Species favourability shift in europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J Climatol 2013:1–18

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fotelli MN, Nahm M, Radoglou K, Rennenberg H, Halyvopoulos G, Matzarakis A (2009) Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. For Ecol Manage 257:1157–1164

    Article  Google Scholar 

  • Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:796–818

    Article  CAS  PubMed  Google Scholar 

  • Gower ST, Mcmurtrie RE, Murty D (1996) Decline with stand age: potential causes. Trends Ecol Evol 11:378–382

    Article  CAS  PubMed  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco: an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    Article  CAS  Google Scholar 

  • Höhne H (1964) Über den Einfluss des Baumalters auf das Gewicht und den Elementgehalt 1-bis 4jähriger Nadeln der Fichte. Arch Forstw 13:247–265

    Google Scholar 

  • Hu B, Simon J, Kuster TM, Arend M, Siegwolf R, Rennenberg H (2013) Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Plant Biol. 15:198–209

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Simon J, Gnthardt-Goerg MS, Arend M, Kuster TM, Rennenberg H (2015) Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type. PLoS One 10:1–21

    Google Scholar 

  • IPCC (2013) In: Stocker D, Qin TF, Plattner PM, Tignor G-K, Allen M, Boschung SK, Nauels J, Xia A, Bex Y, Midgleeds V (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254

  • Juárez-López FJ, Escudero A, Mediavilla S (2008) Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiol 28:367–374

    Article  PubMed  Google Scholar 

  • Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J et al (2008) Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750

    Article  PubMed  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT et al (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change–range, abundance, genetic diversity and adaptive response. For Ecol Manage 259:2213–2222

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent Variation in Growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O et al (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46

    Article  Google Scholar 

  • Matyssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187

    Article  CAS  PubMed  Google Scholar 

  • Medina E (1983) Nitrogen content, leaf structure and photosynthesis in higher plants. Report to the UNEP study group on photosynthesis and bioproductivity. IVIC, Caracas

    Google Scholar 

  • Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG (2004) Converging pattern of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol 24:919–928

    Article  CAS  PubMed  Google Scholar 

  • Merilo E, Tulva I, Räim O, Kükit A, Sellin A, Kull O (2009) Changes in needle nitrogen partitioning and photosynthesis during 80 years of tree ontogeny in Picea abies. Trees Struct. Funct. 23:951–958

    Article  Google Scholar 

  • Millard P (1993) A review of internal cycling of nitrogen within trees in relation to soil fertility. In: Optimization of plant nutrition. Springer, pp 623–628

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Neilsen GH (1989) The influence of nitrogen supply on the uptake and remobilization of stored n for the seasonal growth of apple trees. Ann Bot 63:301

    Article  Google Scholar 

  • Millard P, Proe MF (1991) Leaf demography and the seasonal internal cycling of nitrogen in sycamore (Acer pseudoplatanus L.) seedlings in relation to nitrogen supply. New Phytol 117:587–596

    Article  CAS  Google Scholar 

  • Millard P, Proe MF (1992) Storage and internal cycling of nitrogen in relation to seasonal growth of sitka spruce. Tree Physiol 10:33–43

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Proe M (1993) Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong) carr as influenced by nitrogen supply. new phytol 125:113–119

    Article  CAS  Google Scholar 

  • Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    Article  CAS  PubMed  Google Scholar 

  • Moosmayer H (2002) Langfristige regionale Waldbauplanung in Baden- Württemberg: Grundlagen und Ergebnisse. Schriftenr, Landesforstverwaltung Baden-Württemberg, Stuttgart, Stuttgart

    Google Scholar 

  • Nabeshima E, Hiura T (2008) Size-dependency in hydraulic and photosynthetic properties of three Acer species having different maximum sizes. Ecol Res 23:281–288

    Article  CAS  Google Scholar 

  • Nahm M, Matzarakis A, Rennenberg H, Gessler A (2006) Seasonal courses of key parameters of nitrogen, carbon and water balance in European beech (Fagus sylvatica L.) grown on four different study sites along a European North-South climate gradient during the 2003 drought. Trees 21:79–92

    Article  Google Scholar 

  • Netzer F, Schmid C, Herschbach C, and Rennenberg H (2017) Phosphorus cycling in European beech (F. sylvatica L.): effects of tree age, season, and phosphate availability in the soil. Environ Exp Bot (in press)

  • Niinemets Ü (1997) Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies. Trees 11:144–154

    Google Scholar 

  • Niinemets U (2002) Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiol 22:515–535

    Article  PubMed  Google Scholar 

  • Oberdorfer E (1957) Süddeutsche Pflanzengesellschaften. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 18:419–425

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  CAS  Google Scholar 

  • Peterson PJ (1961) Variation in the mineral content of kauri (Agathis australis Salisb.) leaves with respect to leaf age, leaf position, and tree age. NZJ Sci 4:669–678

    CAS  Google Scholar 

  • Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart H-P et al (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280

    Article  Google Scholar 

  • Puhlmann H, von Wilpert K (2009) Waldbauliche Managementoptionen für die Sicherung der Sickerwasserqualität unter Wäldern: Fallstudie Conventwald. Fachverwaltungen des Bundes und der Ländered. 53:96–109

    CAS  Google Scholar 

  • Rasztovits E, Berki I, Mátyás C, Czimber K, Pötzelsberger E, Móricz N (2014) The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Ann For Sci 71:201–210

    Article  Google Scholar 

  • Rennenberg H, Dannenmann M (2015) Nitrogen nutrition of trees in temperate forests—the significance of nitrogen availability in the pedosphere and atmosphere. Forests 6:2820–2835

    Article  Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS et al (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23

    Article  CAS  PubMed  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Article  CAS  PubMed  Google Scholar 

  • Schoettle AW (1994) Influence of tree size on shoot structure and physiology of pinus-contorta and pinus-Aristata. Tree Physiol 14:1055–1068

    Article  PubMed  Google Scholar 

  • Schraml C, Rennenberg H (2002) Ökotypen der Rotbuche (Fagus sylvatica L.) zeigen unterschiedliche Reaktionen auf Trockenstreß. Forstwissenschaftliches Cent. 121:59–72

    Article  CAS  Google Scholar 

  • Schraml U, Volz K (2004) Conversion of coniferous forests in social and political perspectives, findings from selected countries with special respect to Germany. EFI Res, Rep

    Google Scholar 

  • Simon J, Waldhecker P, Brüggemann N, Rennenberg H (2010) Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings. Plant Biol 12:453–458

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Dannenmann M, Gasche R, Holst J, Mayer H, Papen H et al (2011) Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy. For Ecol Manage 262:105–114

    Article  Google Scholar 

  • Standortskartierung Arbeitskreis (2016) Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen, 7th edn. Arbeitskreis Standortskartierung in der Arbeitsgemeinschaft Forsteinrichtung, Eching, München

    Google Scholar 

  • Sun SJ, Meng P, Zhang JS, Wan X (2014) Hydraulic lift by Juglans regia relates to nutrient status in the intercropped shallow-root crop plant. Plant Soil 374:629–641

    Article  CAS  Google Scholar 

  • Tcherkez G, Farquhar G, Badeck F, Ghashghaie J (2004) Theoretical considerations about carbon isotope distribution in glucose of C 3 plants. Funct Plant Biol 31:857

    Article  CAS  Google Scholar 

  • von Wilpert K (2008) Waldbauliche Steuerungsmöglichkeiten des Stoffhaushalts von Waldökosystemen: Am Beispiel von Buchen- und Fichtenvarianten der Conventwald-Fallstudie. Eigenverlag der FVA, Freiburg, p 237

  • von Wilpert K, Kohler M, and Zirlewagen D (1996) Die Differenzierung des Stoffhaushalts von Waldoekosystemen durch die waldbauliche Behandlung auf einem Gneisstandort des Mittleren Schwarzwaldes: Ergebnisse aus der Oekosystemfallstudie Conventwald. Forstliche Versuchs- und Forschungsanstalt Baden-Wuerttemberg, Freiburg. p 94

  • Wagner S, Berg P, Schädler G, Kunstmann H (2013) High resolution regional climate model simulations for Germany: part II—projected climate changes. Clim Dyn 40:415–427

    Article  Google Scholar 

  • Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees 17:359–366

    CAS  Google Scholar 

  • Werner C, Gessler A (2011) Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: a review of dynamics and mechanisms. Biogeosciences 8(9):2437–2459

    Article  CAS  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B, Johnson DM (2009) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29:261–272

    Article  CAS  PubMed  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

  • Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, and Cramer W (2005) Climate Change in Germany: Vulnerability and Adaption of Climate sensitive Sectors. Federal Environmental Agency (Umweltbundesamt), Dessau, Germany

Download references

Acknowledgements

We gratefully acknowledge the help of Monika Eiblmeier, Dr. Bin Hu, Dr. Bagaou Du, PD Dr. Jürgen Kreuzwieser, Martin Fuchs, and Jannik Menz during sample collection. Data on tree composition of the forest stands were kindly provided by the forestry districts “Breisgau-Hochschwarzwald” and “Emmendingen”. In addition, we express our gratitude to Prof. Dr. Friederike Lang and Jaane Krüger for providing soil analysis data from the Conventwald site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth-Kristina Magh.

Ethics declarations

Supplementary data

Supplementary data for this article are available at Trees online.

Funding

Financial support by the Federal Minister of Agriculture (BML) and the Federal Minister of Environment (BMU) via the Federal Institute of Agriculture and Nutrition (BLE) in the frame of the project “Buchen-Tannen-Mischwälder zur Anpassung von Wirtschaftswäldern an Extremereignisse des Klimawandels (BuTaKli)” within the program “Waldklimafonds” is gratefully acknowledged. The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Prolific Research Group (PRG-1436-24).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Major.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magh, RK., Grün, M., Knothe, V.E. et al. Silver-fir (Abies alba MILL.) neighbors improve water relations of European beech (Fagus sylvatica L.), but do not affect N nutrition. Trees 32, 337–348 (2018). https://doi.org/10.1007/s00468-017-1557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1557-z

Keywords

Navigation