, Volume 31, Issue 2, pp 729–742 | Cite as

Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: implications for conservation and management

  • Sejana Artiaga Rosa
  • A. C. M. C. Barbosa
  • W. J. Junk
  • C. Nunes da Cunha
  • M. T. F. Piedade
  • A. B. Scabin
  • G. C. T. Ceccantini
  • J. Schöngart
Original Article
Part of the following topical collections:
  1. Tree Rings


Key message

Site-specific growth modeling based on tree-ring data is demonstrated to be an efficient tool for conservation and sustainable forest management of an economically important tropical tree species, Calophyllum brasiliense.


One of the main challenges in the sustained management of natural tropical forests is obtaining reliable data on tree growth, which is prerequisite information for determining harvesting volumes and felling cycles. In this study, we apply growth models based on tree-ring data and allometric equations to estimate site-specific management options for timber resources of the commercial species Calophyllum brasiliense (Calophyllaceae) comparing 16 wetland sites across different Brazilian ecoregions, the Amazon, Cerrado (savannah), Pantanal and Mata Atlântica (Coastal Atlantic Rainforest). By modeling diameter, height, and volume growth parameters, we estimate site-specific minimum logging diameters (MLD) and felling cycles analyzing a total of 341 trees. Between ecoregions, the mean diameter increments varied slightly between 4.3 ± 1.6 mm year−1 in the Amazon region (average of six sites), 4.0 ± 0.8 mm year−1 in the Cerrado and Pantanal (average of seven sites), and 4.5 ± 1.2 mm year−1 in the Mata Atlântica (average of three sites). However, between sites, we observed significant differences in diameter and volume increment rates, resulting in felling cycles varying from 14 to 63 years and MLDs in the range of 35–81 cm. This clearly indicates that forest management practices in Brazil, which generally applies a feeling cycle of 25 years and a diameter-cutting limit of 50 cm cannot guarantee a sustainable timber harvest. Timber resource management of this species requires site-specific criteria and should be restricted at sites with a low wood productivity. Moreover, long-term monitoring of the population structure and dynamics is necessary for a better understanding of the relationship between environmental factors and population dynamics, especially concerning the regeneration processes.


Tree rings Tropical forest management Inundation forests Felling cycles Minimum logging diameter 



This study was financed by the National Amazon Research Institute (INPA)/Max-Planck Project; the working group Ecology, monitoring, and sustainable use of wetlands (MAUA) at the National Amazon Research Institute (INPA), Manaus; the Program of Support for Excellence Centers (PRONEX); the Amazonas State Research Support Foundation (FAPEAM); the Brazilian Research Council (CNPq–Universal No. 479684/2011-1); as well as by the National Institute of Science and Technology for Wetlands (INAU) and the Federal University of Mato Grosso (UFMT), Cuiaba-MT. It was also supported by the Federal University of Lavras (UFLA), Lavras-MG, and the National Office of Forests (ONF)—Brazil, Cotriguaçu-MT. We acknowledge the suggestions of two anonymous reviewers.

Compliance with ethical standards


This work was supported by the CNPq—National Counsel of Technological and Scientific Development, Projeto Universal number 479684/2011-1 and the FAPEAM—Research Support Foundation of Amazon State, Programa de Apoio a Núcleos de Excelência (PRONEX-FAPEAM), Number 016/2006.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2016_1503_MOESM1_ESM.docx (637 kb)
Supplementary material 1 (DOCX 953 kb)


  1. Abe F, Nagafuji S, Okabe H et al (2004) Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol Pharm Bull 27:141–143. doi: 10.1248/bpb.27.141 CrossRefPubMedGoogle Scholar
  2. Alder D, Silva JNM (2000) An empirical cohort model for management of terra firme forests in the Brazilian Amazon. For Ecol Manag 130:141–157. doi: 10.1016/S0378-1127(99)00196-6 CrossRefGoogle Scholar
  3. Brienen RJW, Zuidema PA (2006) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manag 226:256–267. doi: 10.1016/j.foreco.2006.01.038 CrossRefGoogle Scholar
  4. Brito ER, Martins SV, Oliveira-Filho de AT et al (2008) Estrutura fitossociológica de um fragmento natural de floresta inundável em área de Campo Sujo, Lagoa da Confusão, Tocantins. Acta Amaz 38:379–386. doi: 10.1590/S0044-59672008000300002 CrossRefGoogle Scholar
  5. Cannell MGR (1984) Woody biomass of forest stands. For Ecol Manag 8:299–312. doi: 10.1016/0378-1127(84)90062-8 CrossRefGoogle Scholar
  6. Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. doi: 10.1111/gcb.12629 CrossRefGoogle Scholar
  7. Da Fonseca Júnior SF, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees 23:127–134. doi: 10.1007/s00468-008-0261-4 CrossRefGoogle Scholar
  8. Dauber E, Fredericksen TS, Peña M (2005) Sustainability of timber harvesting in Bolivian tropical forests. For Ecol Manag 214:294–304. doi: 10.1016/j.foreco.2005.04.019 CrossRefGoogle Scholar
  9. De Ridder M, Van den Bulcke J, Van Acker J, Beeckman H (2013) Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. For Ecol Manag 304:417–426. doi: 10.1016/j.foreco.2013.05.007 CrossRefGoogle Scholar
  10. Durigan G, da Silveira ÉR (1999) Recomposição da mata ciliar em domínio de cerrado, Assis, SP. Sci For 56:135–144Google Scholar
  11. Falkenberg de DB (1999) Aspects of the flora and secondary vegetation in the Restinga from Santa Catarina State, South Brazil. Insula 28:1–30Google Scholar
  12. Finegan B, Camacho M, Zamora N (1999) Diameter increment patterns among 106 tree species in a logged and silviculturally treated Costa Rican rain forest. For Ecol Manag 121:159–176. doi: 10.1016/S0378-1127(98)00551-9 CrossRefGoogle Scholar
  13. Fortini LB, Zarin DJ (2011) Population dynamics and management of Amazon tidal floodplain forests: links to the past, present and future. For Ecol Manag 261:551–561. doi: 10.1016/j.foreco.2010.11.007 CrossRefGoogle Scholar
  14. Fortini LB, Cropper WP Jr, Zarin DJ (2015) Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests. Plos One 10(8):e0136740. doi: 10.1371/journal.pone.0136740 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system, vol 126. Springer, Berlin, Heidelberg, pp 47–67. doi: 10.1007/978-3-662-03416-3_3
  16. Gasparotto A Jr, Brenzan MA, Piloto IC et al (2005) Estudo fitoquímico e avaliação da atividade moluscicida do Calophyllum brasiliense Camb (Clusiaceae). Quim Nova 28:575–578. doi: 10.1590/S0100-40422005000400003 CrossRefGoogle Scholar
  17. Higuchi N, Hummel AC, Freias JV et al (1994) Exploração florestal nas várzeas do estado do Amazonas: seleção de árvore, derrubada e transporte. Proceedings of the VII Harvesting and Transportation of Timber Products. IUFRO/UFPR, Curitiba, Brasil, pp 168–193Google Scholar
  18. Huerta-Reyes M, Basualdo MDC, Abe F et al (2004) HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol Pharm Bull 27:1471–1475. doi: 10.1248/bpb.27.1471 CrossRefPubMedGoogle Scholar
  19. Junk WJ, Piedade MTF (2010) An introduction to South American wetland forests: distribution, definitions and general characterization. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, vol 210. Springer, Netherlands, pp 3–25. doi: 10.1007/978-90-481-8725-6_1
  20. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 110–127Google Scholar
  21. Junk WJ, Piedade MTF, Schöngart J et al (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640. doi: 10.1007/s13157-011-0190-7 CrossRefGoogle Scholar
  22. Junk WJ, Piedade MTF, Lourival R et al (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22. doi: 10.1002/aqc.2386 CrossRefGoogle Scholar
  23. Junk WJ, Wittmann F, Schöngart J et al (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manag 23:677–693. doi: 10.1007/s11273-015-9412-8 CrossRefGoogle Scholar
  24. Lacerda de LD, de Araújo DSD, Maciel NC (1982) Restingas Brasileiras: uma bibliografia. Fundação José Bonifácio, Rio de JaneiroGoogle Scholar
  25. Lemos LMS, Martins TB, Tanajura GH et al (2012) Evaluation of antiulcer activity of chromanone fraction from Calophyllum brasiliesnse Camb. J Ethnopharmacol 141:432–439. doi: 10.1016/j.jep.2012.03.006 CrossRefPubMedGoogle Scholar
  26. Leoni JM, Fonseca Júnior da SF, Schöngart J (2011) Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. For Ecol Manag 261:62–67. doi: 10.1016/j.foreco.2010.09.025 CrossRefGoogle Scholar
  27. López L, Villalba R (2016) Reliable estimate of radial growth for eight tropical tree species based on wood anatomical patterns. J Trop For Sci 28(2):139–152Google Scholar
  28. López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manag 292:49–55. doi: 10.1016/j.foreco.2012.12.011 CrossRefGoogle Scholar
  29. Lorenzi H (1992) Árvores brasileiras—manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova OdessaGoogle Scholar
  30. Marques MCM, Joly CA (2000) Germinação e crescimento de Calophyllum brasiliense (Clusiaceae), uma espécie típica de florestas inundadas. Acta Bot Bras 14:113–120. doi: 10.1590/S0102-33062000000100010 CrossRefGoogle Scholar
  31. Nebel G, Dragsted J, Simonsen TR et al (2001) The Amazon flood plain forest tree Maquira coriacea (Karsten) CC Berg: aspects of ecology and management. For Ecol Manag 150:103–113. doi: 10.1016/S0378-1127(00)00684-8 CrossRefGoogle Scholar
  32. Neeff T, Santos JR (2005) A growth model for secondary forest in Central Amazonia. For Ecol Manag 216:270–282. doi: 10.1016/j.foreco.2005.05.039 CrossRefGoogle Scholar
  33. Nunes da Cunha C, Junk WJWJ, Leitão Filho HDF, Leitão-Filho HF (2007) Woody vegetation in the Pantanal of Mato Grosso, Brazil. A preliminary typology. Amazoniana XIX:159–184Google Scholar
  34. Oliveira de VC, Joly CA (2010) Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees 24:185–193. doi: 10.1007/s00468-009-0392-2 CrossRefGoogle Scholar
  35. Oliveira-Filho De AT (1992) Floodplain “murundus” of Central Brazil: evidence for the termite-origin hypothesis. J Trop Ecol 8:1–19. doi: 10.1017/S0266467400006027 CrossRefGoogle Scholar
  36. Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Embrapa, BrasíliaGoogle Scholar
  37. Prance GT (1979) Notes on the vegetation of Amazonia. III. Terminology of Amazonian forest types subjected to inundation. Brittonia 31:26–38. doi: 10.2307/2806669 CrossRefGoogle Scholar
  38. Pretto JB, Cechinel-Filho V, Noldin VF et al (2004) Antimicrobial activity of fractions and compounds from Calophyllum brasiliense (Clusiaceae/Guttiferae). Zeitschrift für Naturforsch C 59:657–662. doi: 10.1515/znc-2004-9-1009 CrossRefGoogle Scholar
  39. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of Northeastern Mato Grosso. I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Biol Sci 266:449–492CrossRefGoogle Scholar
  40. Redondo-Brenes A (2007) Growth, carbon sequestration, and management of native tree plantations in humid regions of Costa Rica. New For 34:253–268. doi: 10.1007/s11056-007-9052-9 CrossRefGoogle Scholar
  41. Reyes-Chilpa R, Jimenez-Estrada M, Estrada-Muñiz E (1997) Antifungal xanthones from Calophyllum brasiliensis heartwood. J Chem Ecol 23:1901–1911. doi: 10.1023/B:JOEC.0000006459.88330.61 CrossRefGoogle Scholar
  42. Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de floresta de várzea da Amazônia Central por meio de métodos dendrocronológicos. Instituto Nacional de Pesquisas da Amazônia/Universidade Federal do AmazonasGoogle Scholar
  43. Scabin AB, Costa FRC, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas archipelago (Central Amazonia) and logging impacts on species. Environ Conserv 39:111–121. doi: 10.1017/S0376892911000610 CrossRefGoogle Scholar
  44. Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. For Ecol Manag 256:46–58. doi: 10.1016/j.foreco.2008.03.037 CrossRefGoogle Scholar
  45. Schöngart J (2010) Growth-Oriented Logging (GOL): The use of species-specific growth information for forest management in Central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, vol 210. Springer, Netherlands, pp 437–462. doi: 10.1007/978-90-481-8725-6_21
  46. Schöngart J, Queiroz de HL (2010) Floodplains, Traditional timber harvesting in the Central Amazonian. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, vol 210. Springer, Netherlands, pp 419–436. doi: 10.1007/978-90-481-8725-6_20
  47. Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597. doi: 10.1017/S0266467402002389 CrossRefGoogle Scholar
  48. Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. doi: 10.1007/s00442-005-0147-8 CrossRefPubMedGoogle Scholar
  49. Schöngart J, Wittmann F, Worbes M et al (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664. doi: 10.1051/forest:2007044 CrossRefGoogle Scholar
  50. Shupe TE, Aguilar EX, Vlosky RP, Chavez A (2005) Wood properties of selected lesser-used Honduran wood species. J Trop For Sci 17:438–446Google Scholar
  51. Sist P, Picard N, Gourlet-Fleury S (2003) Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo. Ann For Sci 60:803–814. doi: 10.1051/forest:2003075 CrossRefGoogle Scholar
  52. Stahle D, Mushove P, Cleaveland M et al (1999) Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. For Ecol Manag 124:217–229. doi: 10.1016/S0378-1127(99)00075-4 CrossRefGoogle Scholar
  53. Therrell MD, Stahle DW, Mukelabai MM, Shugart HH (2007) Age, and radial growth dynamics of Pterocarpus angolensis in southern Africa. For Ecol Manag 244:24–31. doi: 10.1016/j.foreco.2007.03.023 CrossRefGoogle Scholar
  54. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544. doi: 10.1046/j.1365-2699.2003.00966.x CrossRefGoogle Scholar
  55. Wittmann F, Schöngart J, De Brito JM et al (2010) Manual of trees from Central Amazonian várzea floodplains: taxonomy, ecology and use. Editora INPA, ManausGoogle Scholar
  56. Worbes M (1997) The Forest Ecosystem of the Floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system, vol 126. Springer, Berlin, Heidelberg, pp 223–260. doi: 10.1007/978-3-662-03416-3
  57. Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Graduate Program in Climate and EnvironmentNational Institute for Amazonian Research (INPA)ManausBrazil
  2. 2.Forest Sciences DepartmentFederal University of Lavras (UFLA)LavrasBrazil
  3. 3.National Institute for Science and Technology in Wetlands (INCT-INAU)Federal University of Mato Grosso (UFMT)CuiabáBrazil
  4. 4.Department of Botany and Ecology, Bioscience InstituteFederal University of Mato Grosso (UFMT)CuiabáBrazil
  5. 5.National Institute for Amazonian Research (INPA)ManausBrazil
  6. 6.Graduate Program in EcologyNational Institute for Amazonian Research (INPA)ManausBrazil
  7. 7.Bioscience Institute, Department of BotanyUniversity of São Paulo (USP)São PauloBrazil

Personalised recommendations