, Volume 31, Issue 2, pp 705–716 | Cite as

Submergence, seed germination, and seedling development of the Amazonian floodplain tree Pseudobombax munguba: evidence for root oxytropism

  • Cristiane Silva Ferreira
  • Maria Teresa Fernandez Piedade
  • Augusto Cesar Franco
Original Article
Part of the following topical collections:
  1. Flooding


Key message

Primary root of seeds germinating while submerged grew upwards towards oxygen-rich surface layers. Height of water column influenced germination and root growth. Seedlings removed from water attached to substrate and grow vertically.


Oxygen and light are potentially limiting resources in floodplain forests where plants are subjected to long periods of flooding, particularly in early stages of the life cycle. We experimentally evaluated the effect of flooding and availability of oxygen and light on germination and initial growth of Pseudobombax munguba (Malvaceae), a tree characteristic of the lower portions of the flood-level gradient in Central Amazonian floodplains. Neither flooding nor darkness affected germination (≥93%); however, only seeds that germinated in light developed into seedlings. Germinated seeds floating in water showed positive gravitropic curvature of the primary root and presence of starch-dense amyloplasts (statoliths) in the root cap. Seed germination decreased under 5–7 cm of non-aerated water and the primary root curved upward, extending towards the water surface where oxygen concentration would be higher. Statoliths were not present in the cap cells of these upwardly growing roots suggesting an absence of gravity-directed growth and the involvement, instead, of re-orientation along an oxygen gradient. Although about 50% of seeds germinated under 10 cm of non-aerated water, their primary root did not elongate further after emergence. Seedlings removed from water and positioned horizontally on the surface of a moist, well-aerated substrate attached themselves as roots curved downward, penetrated into the substrate and anchored the plant. The stem bent upright and resumed vertical growth. These features contribute to reducing the time required for establishment in this type of environment where successful colonization is constrained by the short terrestrial phase.


Amazonian flooded forest Flood tolerance Gravitropism Seedling establishment Submergence tolerance Tropism 



This study was supported by Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. The authors thank the Research Group MAUA/National Institute for Amazonian for logistical support in the field, Thomas Christopher Rhys Williams and reviewers for the many helpful comments on the manuscript, Marina Scalon for assistance with statistical analysis and Jéssika Paula Vieira for help with anatomical studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332CrossRefGoogle Scholar
  2. Baskin JM, Baskin CC (2014) Seeds: ecology, biogeography and evolution of dormancy and germination, 2nd edn. Academic Press, San DiegoGoogle Scholar
  3. Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol 116:651–658CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blancaflor EB (2013) Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am J Bot 100:143–152. doi: 10.3732/ajb.1200283 CrossRefPubMedGoogle Scholar
  5. Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H (2007) Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol 176:813–823. doi: 10.1111/j.1469-8137 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Colmer TD, Armstrong W, Greenway H, Ismail AM, Kirk GJD, Atwell BJ (2014) Tolerance in rice: transient complete submergence and prolonged standing water. Progress Bot 75:255–307CrossRefGoogle Scholar
  7. Crawford RMM (2003) Seasonal differences in plant responses to flooding and anoxia. Can J Bot 81:1224–1246. doi: 10.1139/b03-127 CrossRefGoogle Scholar
  8. De Melo RB, Franco AC, Silva CO, Piedade MTF, Ferreira CS (2015) Seed germination and seedling development in response to submergence in tree species of the Central Amazonian floodplains. AoB Plants 7:041. doi: 10.1093/aobpla/plv041 Google Scholar
  9. Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Exp Bot 60:477–483. doi: 10.1016/j.envexpbot.2007.01.005 CrossRefGoogle Scholar
  10. Ferreira CS, Piedade MTF, Franco AC, Gonçalves JFC, Junk WJ (2009) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain, upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquatic Bot 90:246–252CrossRefGoogle Scholar
  11. Ferreira CS, Piedade MTF, Oliveira Wittmann A, Franco AC (2010) Plant reproduction in the Central Amazonian floodplains: challenges and adaptations. AoB Plants 10:009. doi: 10.1093/aobpla/plq009 Google Scholar
  12. Freitas CT, Shepard GH, Piedade MTF (2015) The floating forest: traditional knowledge and use of Matupá vegetation islands by riverine peoples of the Central Amazon. PLoS One 10:e0122542. doi: 10.1371/journal.pone.0122542 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Irion G, Junk WJ, Mello JASN (1997) The large Central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The Central Amazon floodplains. v. Springer, Berlin, pp 23–46CrossRefGoogle Scholar
  14. Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jensen WA (1962) Botanical histochemistry: principles and practice. WH Freeman, San FranciscoGoogle Scholar
  16. Junk WJ, Piedade MTF (1993) Biomass and primary production of herbaceous plant communities in the Amazon floodplain. Hydrobiologia 263:155–162CrossRefGoogle Scholar
  17. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  18. Junk WJ, Piedade MTF, Parolin P, Wittmann F, Schöngart J (2010) Ecophysiology, biodiversity and sustainable management of Central Amazonian floodplain forests. A synthesis. In: Junk WJ, Piedade MTF, Wittmann F; Schöngart J, Parolin P (eds) Central Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management. Heidelberg: Springer Ecological Studies, 210, pp 510–540Google Scholar
  19. Kolb RM, Joly CA (2010) Germination and anaerobic metabolism of seeds of Tabebuia cassinoides (Lam.) DC subjected to flooding and anoxia. Flora 205:112–117. doi: 10.1016/j.flora.2009.01.001 CrossRefGoogle Scholar
  20. Kubitzki K, Ziburski A (1994) Seed dispersal in flood plain forests of Amazonia. Biotropica 26:30–43CrossRefGoogle Scholar
  21. Lucas CM, Mekdeçe F, Nascimento CMN, Holanda ASS, Braga J, Dias S, Sousa S, Rosa PS, Suemitsu C (2012) Effects of short-term and prolonged saturation on seed germination of Amazonian floodplain forest species. Aquatic Bot 99:49–55. doi: 10.1016/j.aquabot.2012.02.004 CrossRefGoogle Scholar
  22. Maia MA (2001) Frutos da amazônia fonte de alimento para peixes, 1st edn. Sebrae/AM, Amazonas, ManausGoogle Scholar
  23. Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci 269:1–18. doi: 10.3389/fpls.2013.00269 Google Scholar
  24. Molisch H (1884) Ueber die Ablenkung der Wurzeln von ihrer normalen Wachsthumsrichtung durch Gase (Aerotropismus). Ber Dtsch Bot Ges 2:160–169. doi: 10.3389/fpls.2015.01176 Google Scholar
  25. Myers JA, Harms KE (2011) Seed arrival and ecological filters interact to assemble high-diversity plant communities. Ecology 92:676–686. doi: 10.1890/10-1001.1 CrossRefPubMedGoogle Scholar
  26. Oliveira Wittmann A, Piedade MTF, Lopes A, Conserva A, Wittmann F (2010) Germination and seedling establishmentin floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F; Schöngart J, Parolin P (eds) Central Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management. Heidelberg: Springer Ecological Studies, 210, pp 259–289Google Scholar
  27. Oliveira Wittmann A, Piedade MTF, Parolin P, Wittmann F (2007) Germination in four low-várzea tree species of Central Amazonia. Aquatic Bot 86:197–203. doi: 10.1016/j.aquabot.2006.10.001 CrossRefGoogle Scholar
  28. Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot 103:359–376. doi: 10.1093/aob/mcn216 CrossRefPubMedGoogle Scholar
  29. Parolin P, Wittmann F, Ferreira LV (2013) Fruit and seed dispersal in Amazonian floodplain trees: a review. Ecotropica 19:15–32Google Scholar
  30. Perbal G, Driss-Ecole D, Tewinkel M, Volkmann D (1997) Statocyte polarity and gravisensitivity in seedling roots grown in microgravity. Planta 203:S57–S62CrossRefPubMedGoogle Scholar
  31. Pérez-Ramos IM, Marañón T (2009) Effects of waterlogging on seed germination of three Mediterranean oak species: ecological implications. Acta Oecol 35:422–428CrossRefGoogle Scholar
  32. Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (ed) The Biogeochemistry of the Amazon Basin. Oxford University Press, pp 209–234Google Scholar
  33. Piedade MTF, Ferreira CS, Wittmann AO, Buckeridge MS, Parolin P (2010) Biochemistry of Amazonian Floodplain Trees. In: Junk WJ, Piedade MTF, Wittmann F; Schöngart J, Parolin P (eds) Central Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management. Heidelberg: Springer Ecological Studies, 210, pp 123–134Google Scholar
  34. Piedade MTF, Schöngart J, Wittmann F, Pia Parolin, Junk W (2013) Impactos da inundação e seca na vegetação de áreas alagáveis amazônicas. In: Borma LS, Nobre C (eds) Secas na Amazônia: causas e consequências. São Paulo, Oficina de Textos, pp 268–305Google Scholar
  35. Porterfield DM (2002) Environmental Sensing and Directional Growth of Plant Roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker Inc, New York, pp 705–730Google Scholar
  36. Porterfield DM, Musgrave ME (1998) The tropic response of plant roots to oxygen: Oxytropism in Pisum sativum L. Planta 206:1–6CrossRefPubMedGoogle Scholar
  37. Porterfield DM, Matthews SW, Daugherty CJ, Musgrave ME (1997) Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana. Plant Physiol 113:685–693CrossRefPubMedPubMedCentralGoogle Scholar
  38. R Development Core Team, 2008. R: A language and environment for statistical computing. In: Computing RFfS (ed), Vienna, AustriaGoogle Scholar
  39. Schmidt LH (2000) Guide to handling of tropical and subtropical forest seed., Danida Forest Seed CentreGoogle Scholar
  40. Sena Gomes AR, Kozlowski TT (1980) Responses of Melaleuca quinquenervia seedlings to flooding. Physiol Plant 49:373–377CrossRefGoogle Scholar
  41. Thiel J, Rolletschek H, Friedel S, Lunn JE, Nguyen TH, Feil R, Tschiersch H, Muller M, Borisjuk L (2011) Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana. BMC Plant Biol 11:48. doi: 10.1186/1471-2229-11-48 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ (2014) Light and gravity signals synergize in modulating plant development. Front Plant Sci 5:563. doi: 10.3389/fpls.2014.00563 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73. doi: 10.1111/nph.13209 CrossRefPubMedGoogle Scholar
  44. Wiersum LK (1967) Potential subsoil utilization by roots. Plant Soil 27:383–400CrossRefGoogle Scholar
  45. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage 196:199–212. doi: 10.1016/j.foreco.2004.02.060 CrossRefGoogle Scholar
  46. Wittmann F, Schöngart J, Junk WJ (2010a) Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F; Schöngart J, Parolin P (eds) Central Amazonian Floodplain Forests: ecophysiology, biodiversity and sustainable management. Heidelberg: Springer Ecological Studies, 210, pp 61–105Google Scholar
  47. Wittmann F, Schongart J, De Brito JM, Wittmann AO, Piedade MTF, Parolin P, Junk WJ, Guillaumet JL (2010b) Manual de árvores de várzeada Amazônia Central.Taxonomia, ecologia e uso. Editora INPA, ManausGoogle Scholar
  48. Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ (2012) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707CrossRefGoogle Scholar
  49. Worbes M, Klinge H, Revilla JD, Martins C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Veg Sci 3:553–564CrossRefGoogle Scholar
  50. Wuebker EF, Mullen RE, Koehler K (2001) Flooding and temperature effects on soybean germination. Crop Sci 41:1857–1861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cristiane Silva Ferreira
    • 1
  • Maria Teresa Fernandez Piedade
    • 2
  • Augusto Cesar Franco
    • 1
  1. 1.Department of BotanyUniversity of BrasiliaBrasiliaBrazil
  2. 2.National Institute for Amazonian Research (INPA)INPA/Max-Planck ProjectManausBrazil

Personalised recommendations