Skip to main content
Log in

Proteomic analysis of osmoprimed and heat-shock-treated Eucalyptus urophylla seeds

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Osmoprimed seeds increased the abundance of pGlcT proteins. Osmopriming together with heat shock increased the abundance of RBR proteins. NAD-ME increased when osmoprimed and heat-shocked seeds were imbibed at low temperature.

Abstract

The purpose of seed priming is to accelerate and synchronize germination and to increase stress tolerance through the activation of genes that function when seeds are exposed to unfavorable conditions. The objectives of this study were: (1) to evaluate the effects of osmopriming and heat-shock treatment on the germination of Eucalyptus urophylla seeds at different temperatures and (2) to analyze the seed proteome to elucidate the mechanisms of tolerance to thermal stress in primed and unprimed seeds. Untreated (control) seeds, osmoprimed (polyethylene glycol for 3 days) and redried seeds, and osmoprimed/heat-shocked (45 °C for 1 h) and redried seeds were germinated for 14 days under constant light (2 × 40 W fluorescent daylight tubes) at 9, 16, 22, 24, or 31 °C. Osmopriming, with or without heat-shock, led to a significant increase in the germination percentage at 9 °C and induced the highest germination speed index at 31 °C. According to proteomic analysis, osmoprimed seeds exhibited an increased abundance of several proteins, including sugar transport proteins, and this may have influenced the metabolic rate during germination. Osmopriming together with heat-shock treatment increased the abundance of proteins associated with regulation of the cell cycle suggesting that such proteins may be involved in protection against thermal stress. The Krebs cycle enzyme was increased when osmoprimed and heat-shocked seeds were imbibed at low temperature, possibly signifying increased synthesis of adenosine triphosphate. The results reported herein serve to explain some of the benefits of osmopriming/heat-shock treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ABRAF—Brazilian Association of Planted Forest Producers (2013) Anuário Estatístico da ABRAF: ano base 2012. ABRAF, Brasília, p 148

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23(2):139–150

    Article  Google Scholar 

  • Ansari O, Sharif-Zadeh F, Moradi A, Azadi MS, Younesi E (2013) Heat shock treatment can improve some seed germination indexes and enzyme activity in primed seeds with gibberellin of mountain rye (Secale montanum) under accelerated aging conditions. Agron Res Moldavia 46(4):21–30

    Google Scholar 

  • Arndt SK, Clifford SC, Wanek W, Jones HG, Popp M (2001) Physiological and morphological adaptation of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol 21(11):705–715

    Article  CAS  PubMed  Google Scholar 

  • Badgujar SB, Mahajan RT (2013) Peptide mass fingerprinting and N-terminal amino acid sequencing of glycosylated cysteine protease of Euphorbia nivulia Buch-Ham. J Amino Acids. doi:10.1155/2013/569527

    PubMed  PubMed Central  Google Scholar 

  • Bargali K, Tewari A (2004) Growth and water relation parameters in drought stressed Coriaria nepalensis seedlings. J Arid Environ 58(4):505–512

    Article  Google Scholar 

  • Belevich I, Verkhovsky MI, Wikström M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440(7085):829–832

    Article  CAS  PubMed  Google Scholar 

  • Berkelman T, Stenstedt T (2002) 2-D electrophoresis using immobilized pH gradients: principles and methods, GE Healthcare Handbook. Edition AC, Uppsala 80:6429–6460

    Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113(5):821–830

    Article  CAS  PubMed  Google Scholar 

  • Carvalho NM, Nakagawa J (2000) Sementes: ciência, tecnologia e produção, 4th edn. Funep, Jaboticabal

    Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R, Arora U (2010) Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed. Sci Technol 38(1):45–57

    Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Lim H, Shin DH, Jeon JS, Bhoo SH, Park YI, Hahn TR (2011) Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol 190(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Cunha RB, Castro M, Fontes W (2006) Espectrometria de massa de proteínas. Biotecnolog Cienc Desenvolv 36:40–46

    Google Scholar 

  • Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C (2014) Novel roles of plant retinoblastoma-related (RBR) protein in cell proliferation and asymmetric cell division. J Exp Bot 65(10):2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Dorna H, Li W, Szopińska D (2014) The effect of priming on germination and vigour of pansy (Viola × wittrockiana Gams) seeds. Acta Sci Pol Hortoru 13(6):15–29

    Google Scholar 

  • Farinha AP, Irar S, de Oliveira E, Oliveira MM, Pagès M (2011) Novel clues on abiotic stress tolerance emerge from embryo proteome analyses of rice varieties with contrasting stress adaptation. Proteomics 11(12):2389–2405

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126(2):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129(2):823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133(2):664–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S (2011) Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta 233(5):895–910

    Article  CAS  PubMed  Google Scholar 

  • Gushwa NN, Hayashi D, Kemper A, Abram B, Taylor JE, Upton J, Tay CF, Fiedler S, Pullen S, Miller LP, Tallman G (2003) Thermotolerant guard cell protoplasts of tree tobacco do not require exogenous hormones to survive in culture and are blocked from reentering the cell cycle at the G1-to-S transition. Plant Physiol 132(4):1925–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutzat R, Borghi L, Gruissem W (2012) Emerging roles of retinoblastoma-related proteins in evolution and plant development. Trends Plant Sci 17(3):139–148

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    Article  PubMed  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • Irar S, Brini F, Goday A, Masmoudi K, Pagès M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)—a wider perspective of the proteome. J Proteomics 73(9):1707–1721

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Tanaka T, Barrero RA et al (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17(2):175–183

    Article  PubMed  PubMed Central  Google Scholar 

  • José AC, da Silva EAA, Davide AC, Toorop P (2011) Protein expression upon desiccation and imbibition of Magnolia ovata A St-Hil seeds. Braz Arch Biol Technol 54(3):465–476

    Article  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst HWM (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2000) Ecofisiologia vegetal. RiMa, São Carlos

    Google Scholar 

  • Maguire JD (1962) Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2(2):176–177

    Article  Google Scholar 

  • Maia J, Dekkers BJW, Provart NJ, Ligterink W, Hilhorst HWM (2011) The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS One 6(12):e29123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MAPA—Ministry of Agriculture, Livestock and Food Supply (2013) Instruções para análise de sementes de espécies florestais. Brasília, MAPA, p 98

    Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Nascimento WM (2005) Vegetable seed priming to improve germination at low temperature. Hortic Brasil 23(2):211–214

    Article  Google Scholar 

  • Oliveira AKM, Ribeiro JWF, Pereira KCL, Silva CAA (2013) Effects of temperature on the germination of Diptychandra aurantiaca (Fabaceae) seeds. Acta Sci, Agron 35(2):203–208

    Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Austria. http://www.R-project.org/

  • Rocha TL, da Costa, PHA, Magalhães JCC, Evaristo RGS, de Vasconcelos EAR, Coutinho MV, Paes NS, da Silva MCM, Grossi-de-Sá MF (2005) Eletroforese bidimensional e análise de proteomas. Comunicado técnico n.136, Embrapa, Brasília, Distrito Federal, p 12

  • SBS—Brazilian Society of Silviculture (2009) São Paulo. Available at http://www.sbs.org.br/FatoseNumerosdoBrasilFlorestal.pdf (accessed 15 May 2014)

  • Sequeiros C, Torres M, Trejo S, Esteves J, Natalucci C, López L (2005) Philibertain gI, the most basic cysteine endopeptidase purified from the latex of Philibertia gilliesii Hook, et Arn. (Apocynaceae). Protein J 24(7–8):445–453

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC (2013) Recent advances in dissecting stress regulatory crosstalk in rice. Mol Plant 6(2):250–260

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5(14):3752–3764

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Xu LL (2009) Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol 51(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Shin KH, Kamal AHM, Cho K, Choi JS, Jin Y, Paek NC, Lee YW, Lee JK, Park JC, Kim HT, Heo HY, Woo SH (2011) Defense proteins are induced in wheat spikes exposed to Fusarium graminearum. Plant Omics 4(5):270–277

    CAS  Google Scholar 

  • Sun WQ (2002) Methods for the study of water relations under desiccation stress. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford

    Google Scholar 

  • Taiz L, Zeiger E (2009) Fisiologia vegetal, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  • Tandang-Silvas MRG, Fukuda T, Fukuda C, Prak K, Cabanos C, Kimura A, Itoh T, Mikami B, Utsumi S, Maruyama N (2010) Conservation and divergence on plant seed 11S globulins based on crystal structures. Biochim Biophys Acta 1804(7):1432–1442

    Article  CAS  PubMed  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99(4):450–456

    CAS  Google Scholar 

  • Winning BM, Bourguignon J, Leaver CJ (1994) Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunit, import, gene complexity and expression analysis. J Biol Chem 269(7):4780–4786

    CAS  PubMed  Google Scholar 

  • Yacoubi R, Job C, Belghazi M, Chaibi W, Job D (2011) Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J Proteome Res 10(9):3891–3903

    Article  CAS  PubMed  Google Scholar 

  • Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Zhao J, Chang XP (2010) Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 35(3):379–388

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401(1):13–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayana de Sá Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Porth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sá Martins, R., José, A.C., Faria, J.M.R. et al. Proteomic analysis of osmoprimed and heat-shock-treated Eucalyptus urophylla seeds. Trees 31, 313–324 (2017). https://doi.org/10.1007/s00468-016-1485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1485-3

Keywords

Navigation