, Volume 30, Issue 5, pp 1467–1482 | Cite as

Importance of tree height and social position for drought-related stress on tree growth and mortality

  • Rüdiger Grote
  • Arthur Gessler
  • Robert Hommel
  • Werner Poschenrieder
  • Eckart Priesack
Part of the following topical collections:
  1. Drought Stress


Key message

A higher mortality of dominant trees under drought stress is explained by impacts of tree size, canopy- and root structure and the hydraulic transport system.


Drought stress can trigger tree mortality but the impact depends on stress intensity (water demand and availability) and on the vulnerability of the individual. Therefore, most research focusses on the species-specific properties such as water use efficiency or hydraulic conductivity that determine vulnerability. At the ecosystem scale, however, tree properties that have been found important for drought sensitivity or resistance vary with individual size and resource availability within a forest—also within the same species. This is caused by different environmental conditions for each tree and hence different growth histories of individuals generating specific anatomical and physiological features. Individual drought stress sensitivity might thus be considerably different from stand scale sensitivity. Indeed, empirical evidence shows that drought stress impact depends on tree social position which can be defined in degrees of suppression but correlated to resource availability, stress sensitivity and stress exposure. In this review, we collect such evidence and discuss the role of microclimate and soil water distribution as well as anatomical and physiological adjustments, which might serve as foundation for better-adapted management strategies to mitigate drought stress impacts. Finally, we define model requirements aiming to capture stand-scale drought responses or management impacts related to drought stress mitigation.


Tree height Drought stress Tree mortality Micro-environment Modelling 



We acknowledge support by the German Research Foundation (DFG) under contract numbers GE 1090/8-1 and 9-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci 106:7063–7066. doi: 10.1073/pnas.0901438106 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams HD, Macalady AK, Breshears DD, Allen CD, Stephenson NL, Saleska SR, Huxman TE, McDowell NG (2010) Climate-induced tree mortality: earth system consequences. Eos Trans Am Geophys Union 91:153–154. doi: 10.1029/2010eo170003 CrossRefGoogle Scholar
  3. Adams HD, Williams AP, Xu C, Rauscher SA, Jiang X, McDowell NG (2013) Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci. doi: 10.3389/fpls.2013.00438 Google Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  5. Ambrose AR, Sillett SC, Koch GW, Van Pelt R, Antoine ME, Dawson TE (2010) Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). Tree Physiol 30:1260–1272. doi: 10.1093/treephys/tpq064 PubMedCrossRefGoogle Scholar
  6. Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36. doi: 10.1038/nclimate1635 CrossRefGoogle Scholar
  7. Aranda I, Pardos M, Puertolas J, Jimenez MD, Pardos JA (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27:671–677. doi: 10.1093/treephys/27.5.671 PubMedCrossRefGoogle Scholar
  8. Arbogast T, Obeyesekere M, Wheeler MF (1993) Numerical methods for the simulation of flow in root-soil systems. SIAM J Numer Anal 30:1677–1702. doi: 10.2307/2158064 CrossRefGoogle Scholar
  9. Augspurger CK, Bartlett EA (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiol 23:517–525. doi: 10.1093/treephys/23.8.517 PubMedCrossRefGoogle Scholar
  10. Aumann CA, David Ford E (2002) Modeling tree water flow as an unsaturated flow through a porous medium. J Theor Biol 219:415–429. doi: 10.1006/jtbi.2002.3061 PubMedCrossRefGoogle Scholar
  11. Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301. doi: 10.1051/forest:2000119 CrossRefGoogle Scholar
  12. Becker P, Meinzer FC, Wullschleger SD (2000) Hydraulic limitation of tree height: a critique. Funct Ecol 14:4–11. doi: 10.1046/j.1365-2435.2000.00397.x CrossRefGoogle Scholar
  13. Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ (2015) Larger trees suffer most during drought in forests worldwide. Nat Plants 1:15139. doi: 10.1038/nplants.2015.139 PubMedCrossRefGoogle Scholar
  14. Berdanier AB, Clark JS (2016) Multiyear drought-induced morbidity preceding tree death in southeastern US forests. Ecol Appl 26:17–23. doi: 10.1890/15-0274 PubMedCrossRefGoogle Scholar
  15. Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A (2011) Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric For Meteorol 151:531–543. doi: 10.1016/j.agrformet.2010.12.008 CrossRefGoogle Scholar
  16. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pne stands of the Valais, Switzerland. Ecosystems 9:330–343. doi: 10.1007/s10021-005-0126-2 CrossRefGoogle Scholar
  17. Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994. doi: 10.1111/j.2007.0030-1299.16034.x CrossRefGoogle Scholar
  18. Binkley D, Campoe OC, Gspaltl M, Forrester DI (2013) Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage 288:5–13. doi: 10.1016/j.foreco.2011.11.002 CrossRefGoogle Scholar
  19. Bircher N, Cailleret M, Bugmann H (2015) The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol Appl 25:1303–1318. doi: 10.1890/14-1462.1 PubMedCrossRefGoogle Scholar
  20. Bittner S, Janott M, Ritter D, Köcher P, Beese F, Priesack E (2012a) Functional–structural water flow model reveals differences between diffuse- and ring-porous tree species. Agric For Meteorol 158–159:80–89. doi: 10.1016/j.agrformet.2012.02.005 CrossRefGoogle Scholar
  21. Bittner S, Legner N, Beese F, Priesack E (2012b) Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees. J Geophys Res 117:G01037. doi: 10.1029/2011jg001780 CrossRefGoogle Scholar
  22. Blanken PD, Black TA, Neumann HH, Den Hartog G, Yang PC, Nesic Z, Lee X (2001) The seasonal water and energy exchange above and within a boreal aspen forest. J Hydrol 245:118–136. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  23. Bohrer G, Mourad H, Laursen TA, Drewry D, Avissar R, Poggi D, Oren R, Katul GG (2005) Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 41:W11404. doi: 10.1029/2005wr004181 CrossRefGoogle Scholar
  24. Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, von Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264:1–11. doi: 10.1023/B:PLSO.0000047777.23344.a3 CrossRefGoogle Scholar
  25. Bolte A, Kampf F, Hilbrig L (2013) Space sequestration below ground in old-growth spruce-beech forests–signs for facilitation? Front Plant Sci. doi: 10.3389/fpls.2013.00322 PubMedPubMedCentralGoogle Scholar
  26. Bontemps J-D, Bouriaud O (2014) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128. doi: 10.1093/forestry/cpt034 CrossRefGoogle Scholar
  27. Brang P, Spathelf P, Larsen JB, Bauhus J, Boncčìna A, Chauvin C, Drössler L, García-Güemes C, Heiri C, Kerr G, Lexer MJ, Mason B, Mohren F, Mühlethaler U, Nocentini S, Svoboda M (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. doi: 10.1093/forestry/cpu018 CrossRefGoogle Scholar
  28. Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306. doi: 10.1093/treephys/15.5.295 PubMedCrossRefGoogle Scholar
  29. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi: 10.1051/forest:2006042 CrossRefGoogle Scholar
  30. Brooks JR, Meinzer FC, Warren JM, Domec J-C, Coulombe R (2006) Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant Cell Environ 29:138–150. doi: 10.1111/j.1365-3040.2005.01409.x PubMedCrossRefGoogle Scholar
  31. Brown SM, Petrone RM, Chasmer L, Mendoza C, Lazerjan MS, Landhäusser SM, Silins U, Leach J, Devito KJ (2014) Atmospheric and soil moisture controls on evapotranspiration from above and within a Western Boreal Plain aspen forest. Hydrol Process 28:4449–4462. doi: 10.1002/hyp.9879 CrossRefGoogle Scholar
  32. Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5. doi: 10.1007/BF00378231 CrossRefGoogle Scholar
  33. Campo AD, Fernandes TJG, Molina AJ (2014) Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: how much can be modified the water cycle through forest management? Eur J For Res 133:879–894. doi: 10.1007/s10342-014-0805-7 CrossRefGoogle Scholar
  34. Cano FJ, Sanchez-Gomez D, Rodriguez-Calcerrada J, Warren CR, Gil L, Aranda I (2013) Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ 36:1961–1980. doi: 10.1111/pce.12103 PubMedGoogle Scholar
  35. Castagneri D, Nola P, Cherubini P, Motta R (2012) Temporal variability of size–growth relationships in a Norway spruce forest: the influences of stand structure, logging, and climate. Can J For Res 42:550–560. doi: 10.1139/x2012-007 CrossRefGoogle Scholar
  36. Cheng S, Widden P, Messier C (2005) Light and tree size influence belowground development in yellow birch and sugar maple. Plant Soil 270:321–330. doi: 10.1007/s11104-004-1726-x CrossRefGoogle Scholar
  37. Chuang Y-L, Oren R, Bertozzi AL, Phillips N, Katul GG (2006) The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Model 191:447–468. doi: 10.1016/j.ecolmodel.2005.03.027 CrossRefGoogle Scholar
  38. Clair SB, Cavard X, Bergeron Y (2013) The role of facilitation and competition in the development and resilience of aspen forests. For Ecol Manage 299:91–99. doi: 10.1016/j.foreco.2013.02.026 CrossRefGoogle Scholar
  39. Collalti A, Perugini L, Santini M, Chiti T, Nolè A, Matteucci G, Valentini R (2014) A process-based model to simulate growth in forests with complex structure: evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecol Model 272:362–378. doi: 10.1016/j.ecolmodel.2013.09.016 CrossRefGoogle Scholar
  40. Cruiziat P, Cochard H, Ameglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752. doi: 10.1051/forest:2002060 CrossRefGoogle Scholar
  41. David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, Cermak J, Chaves MM, Pereira JS, David JS (2013) Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. For Ecol Manage 307:136–146. doi: 10.1016/j.foreco.2013.07.012 CrossRefGoogle Scholar
  42. Domec J-C, Gartner BL (2001) Cavitaton and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214. doi: 10.1007/s004680100095 CrossRefGoogle Scholar
  43. Dordel J, Seely B, Simard SW (2011) Relationships between simulated water stress and mortality and growth rates in underplanted Toona ciliata Roem. in subtropical Argentinean plantations. Ecol Model 222:3226–3235. doi: 10.1016/j.ecolmodel.2011.05.027 CrossRefGoogle Scholar
  44. Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: iI–Modelling of water transfer in the soil root-system with explicit account of flow within the root system–Comparison with experiments. Plant Soil 283:99–117. doi: 10.1007/s11104-004-7904-z CrossRefGoogle Scholar
  45. Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124. doi: 10.1007/s11104-013-1769-y CrossRefGoogle Scholar
  46. Duursma RA, Barton CVM, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE (2011) Rooting depth explains [CO2]–drought interaction in Eucalyptus saligna. Tree Physiol 31:922–931. doi: 10.1093/treephys/tpr030 PubMedCrossRefGoogle Scholar
  47. Eis S (1970) Root-growth relationship of juvenile White spruce, Alpine fir, and Lodgepole pine on three soils in the interior of British Columbia. Department of Fisheries and Forestry, Canadian Forestry Service, Ottawa, Catalogue No. Fo. 47–1276, p 14Google Scholar
  48. Elias P, Kratochvilova I, Janous D, Marek M, Masarovicova E (1989) Stand microclimate and physiological activity of tree leaves in an oak-hornbeam forest I. Stand microclimate. Biomed Life Sci 3:227–233. doi: 10.1007/BF00225357 Google Scholar
  49. Engelbrecht BMJ (2012) Plant ecology: forests on the brink. Nature 491:675–677. doi: 10.1038/nature11756 PubMedGoogle Scholar
  50. Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–295. doi: 10.1051/forest:19990403 CrossRefGoogle Scholar
  51. Ewers BE, Gower ST, Bond-Lamberty B, Wang CK (2005) Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ 28:660–678. doi: 10.1111/j.1365-3040.2005.01312.x CrossRefGoogle Scholar
  52. Farquhar GD, Wong SC (1984) An empirical model of stomatal conductance. Funct Plant Biol 11:191–210. doi: 10.1071/PP9840191 Google Scholar
  53. Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095. doi: 10.1111/nph.12614 PubMedCrossRefGoogle Scholar
  54. Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi: 10.1080/11263500701625897 CrossRefGoogle Scholar
  55. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi: 10.1093/aob/mcf027 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Floyd ML, Romme WH, Rocca ME, Hanna DP, Hanna DD (2015) Structural and regenerative changes in old-growth piñon–juniper woodlands following drought-induced mortality. For Ecol Manage 341:18–29. doi: 10.1016/j.foreco.2014.12.033 CrossRefGoogle Scholar
  57. Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556. doi: 10.2307/1310665 CrossRefGoogle Scholar
  58. Früh T, Kurth W (1999) The hydraulic system of trees: theoretical framework and numerical simulation. J Theor Biol 201:251–270. doi: 10.1006/jtbi.1999.1028 PubMedCrossRefGoogle Scholar
  59. Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759. doi: 10.1111/j.1469-8137.2010.03628.x PubMedCrossRefGoogle Scholar
  60. Gebhardt T, Häberle K-H, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric For Meteorol 197:235–243. doi: 10.1016/j.agrformet.2014.05.013 CrossRefGoogle Scholar
  61. Gressler E, Jochner S, Capdevielle-Vargas RM, Morellato LPC, Menzel A (2015) Vertical variation in autumn leaf phenology of Fagus sylvatica L. in southern Germany. Agric For Meteorol 201:176–186. doi: 10.1016/j.agrformet.2014.10.013 CrossRefGoogle Scholar
  62. Grossiord C, Gessler A, Granier A, Berger S, Bréchet C, Hentschel R, Hommel R, Scherer-Lorenzen M, Bonal D (2014a) Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J Hydrol 519:3511–3519. doi: 10.1016/j.jhydrol.2014.11.011 (Part D) CrossRefGoogle Scholar
  63. Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014b) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci 111:14812–14815. doi: 10.1073/pnas.1411970111 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Grote R (2002) Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fennica 36:779–788CrossRefGoogle Scholar
  65. Grote R, Korhonen J, Mammarella I (2011) Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species. For Syst 20:389–406. doi: 10.5424/fs/20112003-11084 Google Scholar
  66. Guillemot J, Delpierre N, Vallet P, François C, Martin-StPaul NK, Soudani K, Nicolas M, Badeau V, Dufrêne E (2014) Assessing the effects of management on forest growth across France: insights from a new functional–structural model. Ann Bot 114:779–793. doi: 10.1093/aob/mcu059 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Güneralp B, Gertner G (2007) Feedback loop dominance analysis of two tree mortality models: relationship between structure and behavior. Tree Physiol 27:269–280. doi: 10.1093/treephys/27.2.269 PubMedCrossRefGoogle Scholar
  68. Gustafson EJ, Sturtevant BR (2013) Modeling forest mortality caused by drought stress: implications for climate Change. Ecosystems 16:60–74. doi: 10.1007/s10021-012-9596-1 CrossRefGoogle Scholar
  69. Han Q (2011) Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol 31:976–984. doi: 10.1093/treephys/tpr016 PubMedCrossRefGoogle Scholar
  70. Hentschel R, Bittner S, Janott M, Biernath C, Holst J, Ferrio JP, Gessler A, Priesack E (2013) Simulation of stand transpiration based on a xylem water flow model for individual trees. Agric For Meteorol 182–183:31–42. doi: 10.1016/j.agrformet.2013.08.002 CrossRefGoogle Scholar
  71. Hoffmann WA, Marchin R, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742. doi: 10.1111/j.1365-2486.2011.02401.x CrossRefGoogle Scholar
  72. Holst T, Mayer H, Schindler D (2004) Microclimate within beech stands–part II: thermal conditions. Eur J For Res 123:13–28. doi: 10.1007/s10342-004-0019-5 CrossRefGoogle Scholar
  73. Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees 20:67–78. doi: 10.1007/s00468-005-0014-6 CrossRefGoogle Scholar
  74. Hommel R, Siegwolf R, Saurer M, Farquhar GD, Kayler Z, Ferrio JP, Gessler A (2014) Drought response of mesophyll conductance in forest understory species–impacts on water-use efficiency and interactions with leaf water movement. Physiol Plant 152:98–114. doi: 10.1111/ppl.12160 PubMedCrossRefGoogle Scholar
  75. Hubbard RM, Bond BJ, Ryan MG (1999) Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol 19:165–172. doi: 10.1093/treephys/19.3.165 PubMedCrossRefGoogle Scholar
  76. IPCC (2013) Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boshung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University, p 1535Google Scholar
  77. Ivanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, de Oliveira RC, de Camargo PB (2012) Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour Res 48:W12507. doi: 10.1029/2012wr011972 CrossRefGoogle Scholar
  78. Janott M, Gayler S, Gessler A, Javaux M, Klier C, Priesack E (2011) A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant Soil 341:233–256. doi: 10.1007/s11104-010-0639-0 CrossRefGoogle Scholar
  79. Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone 7:1079–1088. doi: 10.2136/vzj2007.0115 CrossRefGoogle Scholar
  80. Jensen A, Löf M, Witzell J (2012) Effects of competition and indirect facilitation by shrubs on Quercus robur saplings. Plant Ecol 213:535–543. doi: 10.1007/s11258-012-0019-3 CrossRefGoogle Scholar
  81. Kanalas P, Fenyvesi A, Kis J, Szöllösi E, Olah V, Ander I, Meszaros I (2010) Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in relation to microclimatic conditions. Acta Biol Hung 61:95–108. doi: 10.1556/ABiol.61.2010.Suppl.10 PubMedCrossRefGoogle Scholar
  82. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi: 10.1038/nature02417 PubMedCrossRefGoogle Scholar
  83. Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234. doi: 10.1093/treephys/tpq055 PubMedCrossRefGoogle Scholar
  84. Kuhr M (2000) Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und sozialer Stellung. Fakultät für Forstwissenschaften und Waldökologie vol Dissertation. Georg-August-Universität, Göttingen, p 136Google Scholar
  85. Latte N, Lebourgeois F, Claessens H (2016) Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts. Trees 30:189–201. doi: 10.1007/s00468-015-1288-y CrossRefGoogle Scholar
  86. Le Goff N, Ottorini J-M (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13. doi: 10.1051/forest:2001104 CrossRefGoogle Scholar
  87. Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71. doi: 10.1016/j.foreco.2013.04.003 CrossRefGoogle Scholar
  88. Li S, Gao J, Zhu Q, Zeng L, Liu J (2015) A dynamic root simulation model in response to soil moisture heterogeneity. Math Comput Simulat 113:40–50. doi: 10.1016/j.matcom.2014.11.030 CrossRefGoogle Scholar
  89. Lindroth A, Cienciala E (1996) Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiol 16:257–262. doi: 10.1093/treephys/16.1-2.257 PubMedCrossRefGoogle Scholar
  90. Liu Y, Muller RN (1993) Effect of drought and frost on radial growth of overstory and understory stems in a deciduous forest. Am Midl Nat 129:19–25. doi: 10.2307/2426431 CrossRefGoogle Scholar
  91. Liu C, Westman CJ (2009) Biomass in a Norway spruce–Scots pine forest: a comparison of estimation methods. Boreal Environ Res 14:875–888Google Scholar
  92. Luo Y, Chen HYH (2011) Competition, species interaction and ageing control tree mortality in boreal forests. J Ecol 99:1470–1480. doi: 10.1111/j.1365-2745.2011.01882.x CrossRefGoogle Scholar
  93. Magnani F, Bensada A, Cinnirella S, Ripullone F, Borghetti M (2008) Hydraulic limitations and water-use efficiency in Pinus pinaster along a chronosequence. Can J For Res 38:73–81. doi: 10.1139/X07-120 CrossRefGoogle Scholar
  94. Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood CliffsGoogle Scholar
  95. Martin-Benito D, Cherubini P, del Rio M, Canellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373. doi: 10.1007/s00468-007-0191-6 CrossRefGoogle Scholar
  96. Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888. doi: 10.1007/s00442-011-2132-8 PubMedCrossRefGoogle Scholar
  97. Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands–part I: photosynthetically active radiation. Forstwissenschaftliches Centralblatt 121:301–321. doi: 10.1046/j.1439-0337.2002.02038.x CrossRefGoogle Scholar
  98. McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5:669–672. doi: 10.1038/nclimate2641 CrossRefGoogle Scholar
  99. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi: 10.1111/j.1469-8137.2008.02436.x PubMedCrossRefGoogle Scholar
  100. McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol 200:304–321. doi: 10.1111/nph.12465 PubMedCrossRefGoogle Scholar
  101. Meinzer FC, Bond BJ, Warren JM, Woodruff DR (2005) Does water transport scale universally with tree size? Funct Ecol 19:558–565. doi: 10.1111/j.1365-2435.2005.01017.x CrossRefGoogle Scholar
  102. Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manage 339:22–33. doi: 10.1016/j.foreco.2014.11.032 CrossRefGoogle Scholar
  103. Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Change Biol 22:903–920. doi: 10.1111/gcb.13113 CrossRefGoogle Scholar
  104. Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends Ecol Evol 18:5–6. doi: 10.1016/S0169-5347(02)00016-2 CrossRefGoogle Scholar
  105. Millikin CS, Bledsoe CS (1999) Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214:27–38. doi: 10.1023/a:1004653932675 CrossRefGoogle Scholar
  106. Mölder I, Leuschner C (2014) European beech grows better and is less drought sensitive in mixed than in pure stands: tree neighbourhood effects on radial increment. Trees 28:777–792. doi: 10.1007/s00468-014-0991-4 CrossRefGoogle Scholar
  107. Mueller RC, Scudder CM, Porter ME, Talbot Trotter R, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093. doi: 10.1111/j.1365-2745.2005.01042.x CrossRefGoogle Scholar
  108. Münch E (1930) Die Stoffbewegungen in der Pflanzen. Gustav Fischer, JenaGoogle Scholar
  109. Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390. doi: 10.2307/1939190 CrossRefGoogle Scholar
  110. Neubauer M, Demant B, Bolte A (2015) Tree-based estimator for below-ground biomass of Pinus sylvestris L. (Einzelbaumbezogene Schätzfunktionen zur unterirdischen Biomasse der Wald-Kiefer). Forstarchiv 86:42–47. doi: 10.4432/0300-4112-86-42 Google Scholar
  111. Niinemets Ü (2002) Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiol 22:515–535. doi: 10.1093/treephys/22.8.515 PubMedCrossRefGoogle Scholar
  112. Niklas KJ, Enquist BJ (2002) On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am Nat 159:482–497. doi: 10.1086/339459 PubMedCrossRefGoogle Scholar
  113. Ogaya R, Barbeta A, Başnou C, Peñuelas J (2015) Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest. Ann For Sci 72:135–144. doi: 10.1007/s13595-014-0408-y CrossRefGoogle Scholar
  114. O’Grady AP, Mitchell PJM, Pinkard EA, Tissue DT (2013) Thirsty roots and hungry leaves: unravelling the roles of carbon and water dynamics in tree mortality. New Phytol 200:294–297. doi: 10.1111/nph.12451 PubMedCrossRefGoogle Scholar
  115. Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric For Meteorol 144:58–72. doi: 10.1016/j.agrformet.2007.01.012 CrossRefGoogle Scholar
  116. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484. doi: 10.1007/s004680050110 CrossRefGoogle Scholar
  117. Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1:467–471. doi: 10.1038/nclimate1293 CrossRefGoogle Scholar
  118. Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699. doi: 10.16/j.foreco.2007.02.007 CrossRefGoogle Scholar
  119. Piper FI, Fajardo A (2011) No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions. Ann Bot 108:907–917. doi: 10.1093/aob/mcr195 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. doi: 10.1111/j.1469-8137.2011.03952.x PubMedCrossRefGoogle Scholar
  121. Pothier D, Margolis HA, Waring RH (1989) Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res 19:432–439. doi: 10.1139/x89-068 CrossRefGoogle Scholar
  122. Pretzsch H (2009) Growing space and competitive situation of individual trees. Forest dynamics, growth and yield, Springer, Berlin, Heidelberg, p 291–336Google Scholar
  123. Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21. doi: 10.1016/S0378-1127(02)00047-6 CrossRefGoogle Scholar
  124. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol (Stuttg) 15:483–495. doi: 10.1111/j.1438-8677.2012.00670.x CrossRefGoogle Scholar
  125. Rambo TR, North MP (2009) Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For Ecol Manage 257:435–442. doi: 10.1016/j.foreco.2008.09.029 CrossRefGoogle Scholar
  126. Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489. doi: 10.1007/bf00379405 CrossRefGoogle Scholar
  127. Richardson AD, O’Keefe J (2010) Phenological differences between understory and overstory: A case study using the long-term Harvard Forest records. In: Noormets A (ed) Phenology of ecosystem processes. Springer Science and Business Media, LLC, Berlin, pp 87–117Google Scholar
  128. Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Change Biol 19:229–240. doi: 10.1111/gcb.12038 CrossRefGoogle Scholar
  129. Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nat Adv Online Publ. doi: 10.1038/nature15539 Google Scholar
  130. Ruiz-Benito P, Lines ER, Gomez-Aparicio L, Zavala MA, Coomes DA (2013) Patterns and drivers of tree mortality in Iberian Forests: climatic effects are modified by competition. PLoS One 8:e56843. doi: 10.1371/journal.pone.0056843 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–383. doi: 10.1111/j.1365-3040.2005.01478.x PubMedCrossRefGoogle Scholar
  132. Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32:22–30. doi: 10.1111/j.1365-3040.2008.01896.x PubMedCrossRefGoogle Scholar
  133. Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281. doi: 10.1111/j.1469-8137.2009.03167.x PubMedCrossRefGoogle Scholar
  134. Schäfer KVR, Oren R, Tenhunen JD (2000) The effect of tree height on crown level stomatal conductance. Plant Cell Environ 23:365–375. doi: 10.1046/j.1365-3040.2000.00553.x CrossRefGoogle Scholar
  135. Schmid I, Kazda M (2005) Clustered root distribution in mature stands of Fagus sylvatica and Picea abies. Ecophysiology 144:25–31. doi: 10.1007/s004442-005-0036-1 Google Scholar
  136. Schneider CL, Attinger S, Delfs JO, Hildebrandt A (2010) Implementing small scale processes at the soil-plant interface–the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 14:279–289. doi: 10.5194/hess-14-279-2010 CrossRefGoogle Scholar
  137. Schröder J, Röhle H, Gerold D, Münder K (2007) Modeling individual-tree growth in stands under forest conversion in East Germany. Eur J Forest Res 126:459–472. doi: 10.1007/s10342-006-0167-x CrossRefGoogle Scholar
  138. Schröder T, Javaux M, Vanderborght J, Körfgen B, Vereecken H (2009) Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model. Vadose Zone 8:783–792. doi: 10.2136/vzj2008.0116 CrossRefGoogle Scholar
  139. Seiwa K (1999) Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Ann Bot 85:355–361. doi: 10.1006/anbo.1998.0831 CrossRefGoogle Scholar
  140. Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161. doi: 10.1111/pce.12141 PubMedCrossRefGoogle Scholar
  141. Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331. doi: 10.1046/j.1365-2435.2002.00626.x CrossRefGoogle Scholar
  142. Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645. doi: 10.1111/j.1365-3040.2007.01765.x PubMedCrossRefGoogle Scholar
  143. Thompson DR, Hinckley TM (1977) Effect of vertical and temporal variations in stand microclimate and soil moisture on water status of several species in an Oak-Hickory forest. Am Midl Nat 97:373–380. doi: 10.2307/2425101 CrossRefGoogle Scholar
  144. To Kumagai (2001) Modeling water transportation and storage in sapwood–model development and validation. Agric For Meteorol 109:105–115. doi: 10.1016/S0168-1923(01)00261-1 CrossRefGoogle Scholar
  145. Trouvé R, Bontemps J-D, Collet C, Seynave I, Lebourgeois F (2014) Growth partitioning in forest stands is affected by stand density and summer drought in sessile oak and Douglas-fir. For Ecol Manage 334:358–368. doi: 10.1016/j.foreco.2014.09.020 CrossRefGoogle Scholar
  146. Trouvé R, Bontemps J-D, Seynave I, Collet C, Lebourgeois F (2015) Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.). Tree Physiol 35:1035–1046. doi: 10.1093/treephys/tpv067 PubMedCrossRefGoogle Scholar
  147. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, BerlinCrossRefGoogle Scholar
  148. Valladares F, Zaragoza-Castells J, Sanchez-Gomez D, Matesanz S, Alonso B, Portsmuth A, Delgado A, Atkin OK (2008) Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? Ann Bot 102:923–933. doi: 10.1093/aob/mcn182 PubMedPubMedCentralCrossRefGoogle Scholar
  149. van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151:765–773. doi: 10.1016/j.agrformet.2011.01.018 CrossRefGoogle Scholar
  150. van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–916. doi: 10.1111/j.1461-0248.2007.01080.x PubMedCrossRefGoogle Scholar
  151. Van Wittenberghe S, Adriaenssens S, Staelens J, Verheyen K, Samson R (2012) Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees 26:1427–1438. doi: 10.1016/S0169-5347(02)00016-2 CrossRefGoogle Scholar
  152. Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830. doi: 10.1093/treephys/19.12.823 PubMedCrossRefGoogle Scholar
  153. Vitasse Y (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol 198:149–155. doi: 10.1111/nph.12130 PubMedCrossRefGoogle Scholar
  154. Vitasse Y, Lenz A, Hoch G, Körner C (2014) Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J Ecol 102:981–988. doi: 10.1111/1365-2745.12251 CrossRefGoogle Scholar
  155. Vogt KA, Moore EE, Vogt DJ, Redlin MJ, Edmonds RL (1983) Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Can J For Res 13:429–437. doi: 10.1139/x83-065 CrossRefGoogle Scholar
  156. von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166–167:144–155. doi: 10.1016/j.agrformet.2012.07.018 CrossRefGoogle Scholar
  157. Wang W, Peng C, Kneeshaw DD, Larocque GR, Luo Z (2012) Drought-induced tree mortality: ecological consequences, causes, and modeling. Environ Rev 20:109–121. doi: 10.1139/a2012-004 CrossRefGoogle Scholar
  158. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667. doi: 10.1038/23251 CrossRefGoogle Scholar
  159. Wirth C, Schumacher J, Schulze ED (2004) Generic biomass functions for Norway spruce in Central Europe–a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139. doi: 10.1093/treephys/24.2.121 PubMedCrossRefGoogle Scholar
  160. Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930. doi: 10.1111/j.1365-3040.2011.02388.x PubMedCrossRefGoogle Scholar
  161. Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant Cell Environ 30:559–569. doi: 10.1111/j.1365-3040.2007.01652.x PubMedCrossRefGoogle Scholar
  162. Wu J, Liu Y, Jelinski DE (2000) Effects of leaf area profiles and canopy stratification on simulated energy fluxes: the problem of vertical spatial scale. Ecol Model 134:283–297. doi: 10.1016/S0304-3800(00)00353-7 CrossRefGoogle Scholar
  163. Wutzler T, Wirth C, Schumacher J (2008) Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can J For Res 38:1661–1678. doi: 10.1139/X07-194 CrossRefGoogle Scholar
  164. Yi C (2008) Momentum transfer within Canopies. J Appl Meteorol Climatol 47:262–275. doi: 10.1175/2007JAMC1667.1 CrossRefGoogle Scholar
  165. Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527Google Scholar
  166. Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221. doi: 10.1080/07352689.2010.483579 CrossRefGoogle Scholar
  167. Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees 26:557–569. doi: 10.1007/s00468-011-0617-z CrossRefGoogle Scholar
  168. Zapater M, Hossann C, Bréda N, Bréchet C, Bonal D, Granier A (2011) Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25:885–894. doi: 10.1007/s00468-011-0563-9 CrossRefGoogle Scholar
  169. Zeppel MJB, Anderegg WRL, Adams HD (2013) Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197:372–374. doi: 10.1111/nph.12090 PubMedCrossRefGoogle Scholar
  170. Zhang Y, Zheng Q, Tyree M (2012) Factors controlling plasticity of leaf morphology in Robinia pseudoacacia I: height-associated variation in leaf structure. Ann For Sci 69:29–37. doi: 10.1007/s13595-011-0133-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  3. 3.Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  4. 4.Hochschule für Nachhaltige Entwicklung EberswaldeEberswaldeGermany
  5. 5.Chair of Forest Yield ScienceTechnische Universität MünchenFreisingGermany
  6. 6.Helmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations