Skip to main content
Log in

Biomechanical constraints on tree architecture

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Mechanical properties of wood constrain most conifers to an excurrent form and limit the width of tree crowns. Development of support tissue alters allometric relations during ontogeny.

Abstract

Biomechanical constraints on tree architecture are explored. Torque on a tree branch is a multiplicative function of mass and moment arm. As such, the need for support rises faster than branch length, which leads to increased taper as branch size increases. This violates assumptions of models, such as the pipe-model theory, for large trees and causes changing allometry with tree size or exposure. Thus, assumptions about optimal design for light capture, self-similarity, or optimal hydraulic architecture need to be modified to account for mechanical constraints and costs. In particular, it is argued that mechanical limitations of compression wood in conifers prevent members of this taxon from developing large branches. With decurrent form ruled out (for larger species), only a conical or excurrent form can develop. Wind is shown to be a major mortality risk for trees. Adaptations for wind include dynamic responses of wood properties and height. It is argued that an adaptation to wind could be the development of an open crown in larger trees to let the wind penetrate, thereby reducing wind-throw risk. It is thus argued that crown shape and branching may result not just from optimal light capture considerations but also from adaptation to and response to wind as well as from mechanical constraints. Results have implications for allometric theory, life history theory, and simulations of tree architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alméras T, Fourier M (2009) Biomechanical design and long-term stability of trees: orphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370–381. doi:10.1016/j.jtbi.2008.10.011

    Article  PubMed  Google Scholar 

  • Alméras T, Costes E, Salles J-C (2004) Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Ann Bot 93:455–468. doi:10.1093/aob/mch054

    Article  PubMed  PubMed Central  Google Scholar 

  • Alméras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457–467. doi:10.1007/s00468-005-0407-6

    Article  Google Scholar 

  • Alméras T, Derycke M, Jaouen G, Beauchêne J, Fournier M (2009) Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. J Exp Bot 60:4397–4410. doi:10.1093/jxb/erp276

    Article  CAS  PubMed  Google Scholar 

  • Ancelin P, Courbaud B, Fourcaud T (2004) Development of an individual tree-based mechanical model to predict wind damage within forest stands. Forest Ecol Manag 203:101–121. doi:10.1016/j.foreco.2004.07.067

    Article  Google Scholar 

  • Anderson-Teixeira KJ, McGarvey JC, Muller-Landau HC, Park JY, Gonzalez-Akre EB, Herrmann V, Bennett AC, So CV, Bourg NA, Thompson JR, McMahon SM, McShea WJ (2015) Size-related scaling of tree form and function in a mixed-age forest. Funct Ecol 29:1587–1602. doi:10.1111/1365-2435.12470

    Article  Google Scholar 

  • Antin C, Pélissier R, Vincent G, Couteron P (2013) Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees 27:1485–1495

    Article  Google Scholar 

  • Bao FC, Jiang ZH, Jiang XM, Lu XX, Luo XQ, Zhang SY (2001) Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35:363–375. doi:10.1007/s002260100099

    Article  CAS  Google Scholar 

  • Bentley LP, Stegen JC, Savage VM, Smith DD, von Allmen EI, Sperry JS, Reich PB, Enquist BJ (2013) An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol Lett 16:1069–1078. doi:10.1111/ele.12127

    Article  PubMed  Google Scholar 

  • Borchert R, Slade NA (1981) Bifurcation ratios and the adaptive geometry of trees. Bot Gaz 142:394–401

    Article  Google Scholar 

  • Borchert R, Tomlinson PB (1984) Architecture and crown geometry in Tabebuia rosea (Bignoniaceae). Am J Bot 71:958–969

    Article  Google Scholar 

  • Chiba Y (1998) Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecol Model 108:219–225

    Article  Google Scholar 

  • Coutand C, Pot G, Badel E (2014) Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees 28:687–697. doi:10.1007/s00468-014-0981-6

    Article  Google Scholar 

  • Dean TJ, Roberts SD, Gilmore DW, Maguire DA, Long JN, O’Hara KL, Seymour RS (2002) An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers. Trees 16:559–568. doi:10.1007/s00468-002-0208-0

    Article  Google Scholar 

  • Eloy C (2011) Leonardo’s rule, self-similarity, and wind-induced stresses in trees. Phys Rev Lett 107:258101. doi:10.1103/PhysRevLett.107.258101

    Article  CAS  PubMed  Google Scholar 

  • Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064. doi:10.1093/treephys/22.15-16.1045

    Article  PubMed  Google Scholar 

  • Farnsworth KD, Niklas KJ (1995) Theories of optimization, form and function in branching architecture in plants. Funct Ecol 9:355–363

    Article  Google Scholar 

  • Fisher JB (1992) How predictive are computer simulations of tree architecture? Int J Plant Sci 153:S137–S146

    Article  Google Scholar 

  • Fisher JB, Hibbs DE (1982) Plasticity of tree architecture: specific and ecological variations found in Aubreville’s model. Am J Bot 69:690–702

    Article  Google Scholar 

  • Fisher JB, Honda H (1979a) Branch geometry and effective leaf area: a study of terminalia-branching pattern. 1. Theoretical trees. Am J Bot 66:633–644

    Article  Google Scholar 

  • Fisher JB, Honda H (1979b) Branch geometry and effective leaf area: a study of terminalia-branching pattern. 2. Survey of real trees. Am J Bot 66:645–655

    Article  Google Scholar 

  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142:82–95

    Article  Google Scholar 

  • Franklin JF, DeBell DS (1988) Thirty-six years of tree population change in an old-growth Pseudotsuga-Tsuga forest. Can J Forest Res 18:633–639

    Article  Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556

    Article  Google Scholar 

  • Gehring E, Pezzatti GB, Krebs P, Mazzoleni S, Conedera M (2015) On the applicability of the pipe model theory on the chestnut tree (Castanea sativa Mill.). Trees 29:321–332. doi:10.1007/s00468-014-1093-z

    Article  Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Article  Google Scholar 

  • Greenberg CH, McNab WH (1998) Forest disturbance in hurricane-related downbursts in the Appalachian mountains of North Carolina. Forest Ecol Manag 104:179–191

    Article  Google Scholar 

  • Greenhill AG (1881) Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow. Proc Camb Philos Soc 4:65–73

    Google Scholar 

  • Groover A (2016) Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol. doi:10.1111/nph.13968

    PubMed  Google Scholar 

  • Hamant O (2013) Widespread mechanosensing controls the structure behind the architecture in plants. Curr Opin Plant Biol 16:654–660. doi:10.1016/j.pbi.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Traas J (2010) The mechanics behind plant development. New Phytol 185:369–385. doi:10.1111/j.1469-8137.2009.03100.x

    Article  PubMed  Google Scholar 

  • Harcombe PA, Marks PL (1983) Five years of tree death in a Fagus-Magnolia forest, southeast Texas (USA). Oecologia 57:49–54

    Article  Google Scholar 

  • Honda H, Fisher JB (1978) Tree branch angle: maximizing effective leaf area. Science 199:888–890

    Article  CAS  PubMed  Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton University Press, Princeton NJ

    Google Scholar 

  • Kane B, Modarres-Sadeghi Y, James KR, Reiland M (2014) Effects of crown structure on the sway characteristics of large decurrent trees. Trees 28:151–159. doi:10.1007/s00468-013-0938-1

    Article  Google Scholar 

  • King DA (1986) Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67:980–990

    Article  Google Scholar 

  • King DA (1990) The adaptive significance of tree height. Am Nat 135:809–828

    Article  Google Scholar 

  • Loehle C (1986) Phototropism of whole trees: effects of habitat and growth form. Am Midl Nat 116:190–196

    Article  Google Scholar 

  • Loehle C (1996) Optimal defensive investments in plants. Oikos 75:299–302

    Article  Google Scholar 

  • Loehle C (2000) Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. Am Nat 156:14–33. doi:10.1086/303369

    Article  PubMed  Google Scholar 

  • Mandelbrot BB (1978) The fractal geometry of trees and other natural phenomena. In: Miles RE, Serra J (eds) Geometrical probability and biological structures: Buffon’s 200th anniversary. Springer, Berlin, pp 235–249

    Chapter  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman and Company, San Francisco CA

    Google Scholar 

  • McMahon TA, Kronauer RE (1976) Tree structures: deducing the principle of mechanical design. J Theor Biol 59:443–466

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1991) The elastic moduli and mechanics of Populus tremuloides (Salicaceae) petioles in bending and torsion. Am J Bot 78:989–996

    Article  Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  • Niklas KJ (1998) The influence of gravity and wind on land plant evolution. Rev Palaeobot Palyno 102:1–14

    Article  CAS  Google Scholar 

  • Nishimura TB (2005) Tree characteristics related to stem breakage of Picea glehnii and Abies sachalinensis. Forest Ecol Manag 215:295–306. doi:10.1016/j.foreco.2005.05.018

    Article  Google Scholar 

  • Ogawa K (2015) Mathematical considerations of the pipe model theory in woody plant species. Trees 29:695–704. doi:10.1007/s00468-014-1147-2

    Article  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three dimensional simulation model. New Phytol 166:791–800. doi:10.1111/j.1469-8137.2005.01328.x

    Article  PubMed  Google Scholar 

  • Perttunen J, Sievänen R (2005) Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecol Model 181:479–491. doi:10.1016/j.ecolmodel.2004.06.034

    Article  Google Scholar 

  • Peterson CJ (2000) Damage and recovery of tree species after two different tornadoes in the same old growth forest: a comparison of infrequent wind disturbances. Forest Ecol Manag 135:237–252. doi:10.1016/S0378-1127(00)00283-8

    Article  Google Scholar 

  • Peterson CJ (2007) Consistent influence of tree diameter and species on damage in nine eastern North America tornado blowdowns. Forest Ecol Manag 250:96–108. doi:10.1016/j.foreco.2007.03.013

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628. doi:10.1111/j.1365-3040.2006.01539.x

    Article  PubMed  Google Scholar 

  • Pot G, Coutand C, Toussaint E, Le Cam J-B, Saudreau M (2014) A model to simulate the gravitropic response and internal stresses in trees, considering the progressive maturation of wood. Trees 28:1235–1248. doi:10.1007/s00468-014-1033-y

    Article  Google Scholar 

  • Raulier F, Ung C-H, Ouellet D (1996) Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands. Can J Forest Res 26:1742–1753

    Article  Google Scholar 

  • Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565. doi:10.3732/ajb.93.10.1546

    Article  PubMed  Google Scholar 

  • Richter JP (1970) The notebooks of Leonardo da Vinci. Dover Publications, Dover

    Google Scholar 

  • Roden JS (2003) Modeling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees 17:117–126. doi:10.1007/s00468-002-0213-3

    Google Scholar 

  • Rouvinen S, Kuuluvainen T (1997) Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest. Can J Forest Res 27:890–902

    Article  Google Scholar 

  • Scott RE, Mitchell SJ (2005) Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecol Manag 218:193–209. doi:10.1016/j.foreco.2005.07.012

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form. Pipe model theory. I. Basic analysis. Jpn J Ecol 14:97–105

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form. Pipe model theory. II. Further evidences of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  • Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann Forest Sci 57:399–412. doi:10.1051/forest:2000131

    Article  Google Scholar 

  • Sillett SC, Van Pelt R, Carroll AL, Kramer RD, Ambrose AR, Trask D (2015) How do tree structure and old age affect growth potential of California redwoods? Ecol Monogr 85:181–212. doi:10.1890/14-1016.1

    Article  Google Scholar 

  • Skatter S, Kucera B (2000) Tree breakage from torsional wind loading due to crown asymmetry. Forest Ecol Manag 135:97–103. doi:10.1016/S0378-1127(00)00301-7

    Article  Google Scholar 

  • Smith WK, Brewer CA (1994) The adaptive importance of shoot and crown architecture in conifer trees. Am Nat 143:528–532

    Article  Google Scholar 

  • Smith DD, Sperry JS, Enquist BJ, Savage VM, McCulloh KA, Bentley LP (2014) Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling. New Phytol 201:217–229. doi:10.1111/nph.12487

    Article  PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645. doi:10.1111/j.1365-3040.2007.01765.x

    Article  PubMed  Google Scholar 

  • Stathers RJ, Rollerson TP, Mitchell SJ (1994) Windthrow handbook for British Columbia forests. British Columbia Ministry of Forests Research Program

  • Takenaka A (1994) A simulation model of tree architecture development based on growth response to local light environment. J Plant Res 107:321–330

    Article  Google Scholar 

  • Tomlinson PB (1987) Architecture of tropical plants. Annu Rev Ecol Syst 18:1–21

    Article  Google Scholar 

  • Vogel S (1989) Drag and reconfiguration of broad leaves in high winds. J Exp Bot 40:941–948

    Article  Google Scholar 

  • Vogel S (2007) Living in a physical world XI. To twist or bend when stressed. J Biosci 32:643–655. doi:10.1007/s12038-007-0064-6

    Article  PubMed  Google Scholar 

  • Yamazaki K (2011) Gone with the wind: trembling leaves may deter herbivory. Biol J Linn Soc 104:738–747. doi:10.1111/j.1095-8312.2011.01776.x

    Article  Google Scholar 

  • Yang X-D, Yan E-R, Chang SX, Da L-J, Wang X-H (2015) Tree architecture varies with forest succession in evergreen broad-leaved forests in eastern China. Trees 29:43–57. doi:10.1007/s00468-014-1054-6

    Article  Google Scholar 

  • Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J Forest Res 28:106–114

    Article  Google Scholar 

Download references

Acknowledgments

No outside funding was utilized for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Loehle.

Ethics declarations

Conflict of interest

The author declares no conflict of interest in this work.

Additional information

Communicated by M. Buckerdige.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loehle, C. Biomechanical constraints on tree architecture. Trees 30, 2061–2070 (2016). https://doi.org/10.1007/s00468-016-1433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1433-2

Keywords

Navigation