Skip to main content
Log in

Cloning and functional characterization of PjCAO gene involved in chlorophyll b biosynthesis in Pseudosasa japonica cv. Akebonosuji

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Not only the first systematic characterization of CAO gene in bamboo species, but also the first attempt to study the relationship between CAO gene expression and bamboo leaf color variation.

Abstract

Chlorophyllide a oxygenase (CAO) converts chlorophyllide (Chlide) a to Chlide b and hence plays an important role in chlorophyll (Chl) b biosynthesis. In this study, a cDNA of a CAO homologue designated PjCAO was isolated from Pseudosasa japonica cv. Akebonosuji that is a cultivar of high ornamental value in landscape due to its unique green-white striped leaf phenotype. The full-length cDNA of PjCAO was 2070 bp long with a 1626 bp open reading frame that encoded 541 amino acids. Multiple sequence alignment for amino acid showed that the putative PjCAO protein shared a high sequence similarity with CAO homologues from other plant species and consisted of four conserved parts, an amino-terminal transit peptide and three individual domains, namely, A, B, and C domain. Further, PjCAO was overexpressed in Arabidopsis thaliana; and the Chl b contents of these PjCAO-overexpressed plants were much higher than that of wild-type plants, thereby indicating its important role in Chl b synthesis. Reverse transcription real time quantitative polymerase chain reaction revealed that PjCAO was ubiquitously expressed in all the 14 tissue samples collected from P. japonica cv. Akebonosuji. Specifically, it was expressed at higher levels in 12 leaf samples than in culms and roots. Moreover, the expression of PjCAO kept increasing during the development of white, striped, and green leaf samples, thus indicating its potential role in leaf development. In addition, the expression levels of PjCAO in leaf samples within almost the same developmental stages fell into two distinct classes: high expression levels in green, and almost green with some white stripes samples; and low expression levels in white, and almost white with some green stripes samples. Collectively, these expression data suggest that PjCAO may be involved in the leaf color variation for P. japonica cv. Akebonosuji.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyophenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale SI (2005) Green genes gleaned. Trends Plant Sci 10:309–312

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol 159:433–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507–10511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8:e56573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47:685–714

    Article  CAS  Google Scholar 

  • Hirashima M, Satoh S, Tanaka R, Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281:15385–15393

    Article  CAS  PubMed  Google Scholar 

  • Kusumi K, Iba K (2014) Establishment of the chloroplast genetic system in rice during early leaf development and at low temperatures. Front Plant Sci 5:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K (2010) Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol 27:85–90

    Article  CAS  Google Scholar 

  • Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805–818

    Article  CAS  PubMed  Google Scholar 

  • Liu N-T, Wu F-H, Tsay H-S, Chang W-C, Lin C-S (2008) Establishment of a cDNA library from Bambusa edulis Murno in vitro-grown shoots. Plant Cell Tissue Organ 95:21–27

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant Cell Physiol 53:1232–1246

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Satoh S, Tanaka R, Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J 49:800–809

    Article  CAS  PubMed  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun 326:466–471

    Article  CAS  PubMed  Google Scholar 

  • Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, Gao ZM, Lu HY, Hu T, Yao N, Liu KY et al (2013) The draft genome of the fast-growing non-timber forest species Moso bamboo (Phyllostachys heterocycla). Nature Genet 45:456–461, 461e451–452

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Qi FY, Hu T, Peng ZH, Gao J (2013) Screening of reference genes used in qRT-PCR and expression analysis of PheTFL1 gene in Moso Bamboo. Acta Bot Boreal Occident Sin 1:011

    Google Scholar 

  • Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiol Biochem 45:740–749

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009) Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 284:36689–36699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Tanaka A (2005) Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res 85:327–340

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K, Tanaka A (2001) Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J 26:365–373

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellburn A, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research, vol II. Springer, The Hague, pp 9–12

    Chapter  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasato A, Tanaka R, Tanaka A (2008) Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings. BMC Plant Biol 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Peng Z, Fei B, Li L, Hu T, Gao Z, Jiang Z (2014) BambooGDB: a bamboo genome database with functional annotation and an analysis platform. Database Oxford 2014:bau006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant from the National Natural Science Foundation of China (31170565, 31270645 and 31470615), the Program of Natural Science Foundation of Zhejiang Province (LR12C16001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbing Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Canovas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Zhou, M., Yang, H. et al. Cloning and functional characterization of PjCAO gene involved in chlorophyll b biosynthesis in Pseudosasa japonica cv. Akebonosuji. Trees 30, 1303–1314 (2016). https://doi.org/10.1007/s00468-016-1367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1367-8

Keywords

Navigation