, Volume 30, Issue 4, pp 1287–1301 | Cite as

Dense Canopy Height Model from a low-cost photogrammetric platform and LiDAR data

  • Mónica Herrero-HuertaEmail author
  • Beatriz Felipe-García
  • Soledad Belmar-Lizarán
  • David Hernández-López
  • Pablo Rodríguez-Gonzálvez
  • Diego González-Aguilera
Original Article


Key message

Low-cost methodology to obtain CHMs integrating terrain data from LiDAR into photogrammetric point clouds with greater spatial, radiometric and temporal resolution due to a correction model.


This study focuses on developing a methodology to generate a Dense Canopy Height Model based on the registration of point clouds from LiDAR open data and the photogrammetric output from a low-cost flight. To minimise georeferencing errors from dataset registration, terrain data from LiDAR were refined to be included in the photogrammetric point cloud through a correction model supported by a statistical analysis of heights. As a result, a fusion point cloud was obtained, which applies LiDAR to characterize the terrain in areas with high vegetation and utilizes the greater spatial, radiometric and temporal resolution of photogrammetry. The obtained results have been successfully validated: the accuracy of the fusion cloud is statistically consistent with the accuracies of both clouds based on the principles of classical photogrammetry and LiDAR processing. The resulting point cloud, through a radiometric and geometric segmentation process, allows a Dense Canopy Height Model to be obtained.


Dense Canopy Height Model Photogrammetry LiDAR Data fusion Low-cost platform Radiometric segmentation 



This research arose as a pilot project in collaboration with the Public Land and Natural Spaces Service, belonging to the Peripheral Services of the Agricultural Commission of the Regional Government of Castilla-La Mancha; the Institute for Development of the University of Castilla-La Mancha; the Forestry and Natural Spaces Service; the Agriculture, Environment and Rural Development Department of the Castilla-La Mancha Regional Government; and the USAL research group Geomatic Technologies for the 3D digitalisation and modelling of complex objects (TIDOP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. ASPRS Foundation (2012) LASer (LAS) file format exchange activities. Accessed 01 Nov 2014
  2. Attene M (2010) A lightweight approach to repairing digitized polygon meshes. Vis Comput 26(11):1393–1406CrossRefGoogle Scholar
  3. Axelsson P (1999) Processing of laser scanner data—algorithms and applications. ISPRS J Photogramm Remote Sens 54(2):138–147CrossRefGoogle Scholar
  4. Barazzetti L, Remondino F, Scaioni M, Brumana R (2010) Fully automatic UAV image-based sensor orientation. In: Proceedings of the 2010 Canadian geomatics conference and symposium of commission IGoogle Scholar
  5. Barequet G, Kumar S (1997) Repairing CAD models. In: Visualization’97, proceedings, pp 363–370. IEEEGoogle Scholar
  6. Barequet G, Sharir M (1995) Filling gaps in the boundary of a polyhedron. Comput Aided Geom Des 12(2):207–229CrossRefGoogle Scholar
  7. Benko M, Balenovic I (2011) Past, present and future of application of remote sensing methods in croatian forest inventory. Sumarski List 135:272–281Google Scholar
  8. Bohlin J, Wallerman J, Fransson JES (2012) Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res 27(7):692–699CrossRefGoogle Scholar
  9. Bøhn JH, Wozny MJ (1992) Automatic CAD-model repair: shell-closure. In: Proceedings of symposium on solid freeform fabrication, pp 86–94Google Scholar
  10. Branch D, Dang LC, Hall N, Ketchum W, Melakayil M, Parrent J, Baron E (2006) Comparative direct analysis of type Ia supernova spectra. II. Maximum light. Publ Astron Soc Pac 118(842):560–571CrossRefGoogle Scholar
  11. Cerro A, Borja MEL (2007) El “Pinus nigra arn.” en la Serranía de Cuenca: estudio sobre su regeneración natural y bases para su gestión. Junta de Comunidades de Castilla-La Mancha, Dirección General del Medio AmbienteGoogle Scholar
  12. Chauve A, Mallet C, Bretar F, Durrieu S, Deseilligny MP, Puech W (2007) Processing full-waveform lidar data: modelling raw signals. In: International archives of photogrammetry, remote sensing and spatial information sciences, pp 102–107Google Scholar
  13. CNIG (National Center of Geographic Information in Spain) (2009) Technical specifications for the National Plan of Aerial Orthophotography (PNOA). Accessed 01 Nov 2014
  14. CNIG (National Center of Geographic Information in Spain) (2015). Accessed 16 July 2015
  15. Dolenc A, Makela I (1993) Some efficient procedures for correcting triangulated models. In: Proceedings of solid freeform fabrication symposium, pp 126–134Google Scholar
  16. D’Oliveira MV, Reutebuch SE, McGaughey RJ, Andersen HE (2012) Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens Environ 124:479–491CrossRefGoogle Scholar
  17. Eid T, Gobakken T, Naesset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19(6):512–523CrossRefGoogle Scholar
  18. Estornell J, Ruiz LA, Velazquez-Marti B, Hermosilla T (2012) Assessment of factors affecting shrub volume estimations using airborne discrete-return LiDAR data in Mediterranean areas. J Appl Remote Sens 6(1):063544CrossRefGoogle Scholar
  19. Fan YZ, Tam BS, Zhou J (2008) Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order. Linear Multilinear Algebra 56(4):381–397CrossRefGoogle Scholar
  20. Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91CrossRefGoogle Scholar
  21. Gonzalez E, Dieguez U, Miranda D (2012) Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85(2):281–292CrossRefGoogle Scholar
  22. González-Aguilera D, Guerrero D, Hernández-López D, Rodríguez-Gonzálvez P, Pierrot M, Fernández-Hernández J (2013) PW, photogrammetry workbenchGoogle Scholar
  23. González-Ferreiro E, Diéguez-Aranda U, Crecente-Campo F, Barreiro-Fernández L, Miranda D, Castedo-Dorado F (2014) Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. Int J Wildl Fire 23(3):350–362CrossRefGoogle Scholar
  24. Gupta S, Weinacker H, Koch B (2010) Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data. Remote Sens 2(4):968–989CrossRefGoogle Scholar
  25. Guskov I, Wood ZJ (2001) Topological noise removal. In: 2001 graphics interface proceedings, Ottawa, Canada, 19Google Scholar
  26. Hernández-Lopez D, Felipe B, González D, Arias B (2013) An automatic approach to UAV flight planning and control for photogrammetric applications: a test case in the Asturias Region (Spain). Photogramm Eng Remote Sens 79(1):87–98CrossRefGoogle Scholar
  27. Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29(5):1339–1366CrossRefGoogle Scholar
  28. IGN (2015) Accessed 16 July 2015
  29. Jaakkola A, Hyyppä J, Kukko A, Yu X, Kaartinen H, Lehtomäki M, Lin Y (2010) A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J Photogramm Remote Sens 65:514–522CrossRefGoogle Scholar
  30. Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R (2012) Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogramm Remote Sens 74:78–84CrossRefGoogle Scholar
  31. Kankare V, Vastaranta M, Holopainen M, Räty M, Yu X, Hyyppä J, Viitala R (2013) Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens 5(5):2257–2274CrossRefGoogle Scholar
  32. Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30(2–3):271–274Google Scholar
  33. Kraus K (2007) Photogrammetry, 2007. Geometry from images and laser scans. Walter de GruyterGoogle Scholar
  34. Lim KS, Treitz PM (2004) Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand J For Res 19(6):558–570CrossRefGoogle Scholar
  35. Lisein J, Pierrot M, Bonnet S, Lejeune P (2013) A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4(4):922–944CrossRefGoogle Scholar
  36. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRefGoogle Scholar
  37. Magnussen S, Boudewyn P, Wulder MA, Seemann D (2000) Predictions of forest inventory cover type proportions using landsat TM. Silva Fennica 34(4):351–370CrossRefGoogle Scholar
  38. Magnussen S, Naesset E, Wulder MA (2007) Efficient multiresolution spatial predictions for large data arrays. Remote Sens Environ 109(4):451–463CrossRefGoogle Scholar
  39. Magnusson M, Fransson JES, Olsson H (2007) Aerial photo-interpretation using Z/I DMC images for estimation of forest variables. Scand J For Res 22(3):254–266CrossRefGoogle Scholar
  40. Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64(1):1–16CrossRefGoogle Scholar
  41. Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66(11):1367–1372Google Scholar
  42. Mora B, Wulder MA, Hobart GW, White JC, Bater CW, Gougeon FA, Coops NC (2013) Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots. Int J Remote Sens 34(12):4406–4424CrossRefGoogle Scholar
  43. Naesset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61(2):246–253CrossRefGoogle Scholar
  44. Naesset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19(2):164–179CrossRefGoogle Scholar
  45. Naesset E, Bollandsas OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94(4):541–553CrossRefGoogle Scholar
  46. Navarro-Cerrillo RM, del Campo AD, Ceacero CJ, Quero JL, Hermoso de Mena J (2014) On the importance of topography, site quality, stock quality and planting date in a semiarid plantation: feasibility of using low-density LiDAR. Ecol Eng 67:25–38CrossRefGoogle Scholar
  47. NavCen (2008) Global positioning system standard positioning service performance standar, 4th edn. US Department of Defense: Position, Navigation and Timing Executive Committee, WashingtonGoogle Scholar
  48. Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24(2):247–267CrossRefGoogle Scholar
  49. Nelson R, Oderwald R, Gregoire TG (1997) Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sens Environ 60(3):311–326CrossRefGoogle Scholar
  50. Nelson R, Parker G, Hom M (2003) A portable airborne laser system for forest inventory. Photogramm Eng Remote Sens 69(3):267–273CrossRefGoogle Scholar
  51. Ortega-Terol D, Moreno MA, Hernández-López D, Rodríguez-Gonzálvez P (2014) Survey and classification of large woody debris (LWD) in streams using generated low-cost geomatic products. Remote Sens 6:11770–11790CrossRefGoogle Scholar
  52. Pierrot-Deseilligny M, Clery I (2011) An open source bundle adjustment software for automatic calibration and orientation of set of images. In: Apero, ISPRS symposium, 3DARCH11, Trento, Italy, March 2–4, pp 269–276Google Scholar
  53. Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Comput Electron Agric 37(1):71–95CrossRefGoogle Scholar
  54. Premerlani W, Bizard P (2014) Direction cosine matrix IMU: theory. Accessed 20 Dec 2014
  55. Richardson JJ, Moskal LM (2011) Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sens Environ 115(10):2640–2651CrossRefGoogle Scholar
  56. Rock SJ, Wozny MJ (1992) Generating topological information from a bucket of facets. In: Solid freeform fabrication symposium proceedings, pp 251–259. The University of Texas at Austin, AustinGoogle Scholar
  57. St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29(11):3343–3364CrossRefGoogle Scholar
  58. Takasu T (2009) RTKLIB: open source program package for RTK-GPS. FOSS4G, Tokyo, JapanGoogle Scholar
  59. Tao W, Lei Y, Mooney P (2011) Dense point cloud extraction from UAV captured images in forest area. In: Proceedings of the 2011 IEEE international conference on spatial data mining and geographical knowledge services (ICSDM), pp 389–392Google Scholar
  60. Varnuška M, Parus J, Kolingerová I (2005) Simple holes triangulation in surface reconstruction. In: Proceedings of ALGORITMY, pp 280–289Google Scholar
  61. Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543CrossRefGoogle Scholar
  62. Wang Z, Boesch R, Ginzler C (2007) Color and lidar data fusion: application to automatic forest boundary delineation in aerial images. Int Arch Photogramm Remote Sens Spat Inf Sci [CD] 36(1):W51Google Scholar
  63. Weinacker H, Koch B, Heyder U, Weinacker R (2004) Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spat Inf Sci 36(Part 8):50–55Google Scholar
  64. White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Woods M (2013a) A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. For Chron 89(6):722–723CrossRefGoogle Scholar
  65. White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M (2013b) The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3):518–536CrossRefGoogle Scholar
  66. Willers JL, Wu J, O’Hara C, Jenkins JN (2012) A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications. Comput Electron Agric 82:15–22CrossRefGoogle Scholar
  67. Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S (2008a) Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8(1):529–560CrossRefPubMedCentralGoogle Scholar
  68. Wulder MA, White JC, Hay GJ, Castilla G (2008b) Towards automated segmentation of forest inventory polygons on high spatial resolution satellite imagery. For Chron 84(2):221–230CrossRefGoogle Scholar
  69. Wulder MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC, Gobakken T (2012) Lidar sampling for large-area forest characterization: a review. Remote Sens Environ 121:196–209CrossRefGoogle Scholar
  70. Wulder MA, Coops NC, Hudak AT, Morsdorf F, Nelson R, Newnham G, Vastaranta M (2013) Status and prospects for LiDAR remote sensing of forested ecosystems. Can J Remote Sens 39(sup1):S1–S5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mónica Herrero-Huerta
    • 1
    Email author
  • Beatriz Felipe-García
    • 2
  • Soledad Belmar-Lizarán
    • 3
  • David Hernández-López
    • 3
  • Pablo Rodríguez-Gonzálvez
    • 1
  • Diego González-Aguilera
    • 1
  1. 1.Department of Cartographic and Land Engineering, Higher Polytechnic School of AvilaUniversity of SalamancaÁvilaSpain
  2. 2.Forestry and Natural Spaces Service, Agriculture, Environment and Rural Development DepartmentCastilla-La Mancha Regional GovernmentAlbaceteSpain
  3. 3.Institute for Regional Development (IDR)University of Castilla La ManchaAlbaceteSpain

Personalised recommendations