Skip to main content

Advertisement

Log in

Dense Canopy Height Model from a low-cost photogrammetric platform and LiDAR data

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Low-cost methodology to obtain CHMs integrating terrain data from LiDAR into photogrammetric point clouds with greater spatial, radiometric and temporal resolution due to a correction model.

Abstract

This study focuses on developing a methodology to generate a Dense Canopy Height Model based on the registration of point clouds from LiDAR open data and the photogrammetric output from a low-cost flight. To minimise georeferencing errors from dataset registration, terrain data from LiDAR were refined to be included in the photogrammetric point cloud through a correction model supported by a statistical analysis of heights. As a result, a fusion point cloud was obtained, which applies LiDAR to characterize the terrain in areas with high vegetation and utilizes the greater spatial, radiometric and temporal resolution of photogrammetry. The obtained results have been successfully validated: the accuracy of the fusion cloud is statistically consistent with the accuracies of both clouds based on the principles of classical photogrammetry and LiDAR processing. The resulting point cloud, through a radiometric and geometric segmentation process, allows a Dense Canopy Height Model to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Rodal method: methods applied to a surface with similar arboreal characteristics.

  2. Individual-tree methods: methods applied differentially to each tree.

References

  • ASPRS Foundation (2012) LASer (LAS) file format exchange activities. http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html. Accessed 01 Nov 2014

  • Attene M (2010) A lightweight approach to repairing digitized polygon meshes. Vis Comput 26(11):1393–1406

    Article  Google Scholar 

  • Axelsson P (1999) Processing of laser scanner data—algorithms and applications. ISPRS J Photogramm Remote Sens 54(2):138–147

    Article  Google Scholar 

  • Barazzetti L, Remondino F, Scaioni M, Brumana R (2010) Fully automatic UAV image-based sensor orientation. In: Proceedings of the 2010 Canadian geomatics conference and symposium of commission I

  • Barequet G, Kumar S (1997) Repairing CAD models. In: Visualization’97, proceedings, pp 363–370. IEEE

  • Barequet G, Sharir M (1995) Filling gaps in the boundary of a polyhedron. Comput Aided Geom Des 12(2):207–229

    Article  Google Scholar 

  • Benko M, Balenovic I (2011) Past, present and future of application of remote sensing methods in croatian forest inventory. Sumarski List 135:272–281

    Google Scholar 

  • Bohlin J, Wallerman J, Fransson JES (2012) Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res 27(7):692–699

    Article  Google Scholar 

  • Bøhn JH, Wozny MJ (1992) Automatic CAD-model repair: shell-closure. In: Proceedings of symposium on solid freeform fabrication, pp 86–94

  • Branch D, Dang LC, Hall N, Ketchum W, Melakayil M, Parrent J, Baron E (2006) Comparative direct analysis of type Ia supernova spectra. II. Maximum light. Publ Astron Soc Pac 118(842):560–571

    Article  Google Scholar 

  • Cerro A, Borja MEL (2007) El “Pinus nigra arn.” en la Serranía de Cuenca: estudio sobre su regeneración natural y bases para su gestión. Junta de Comunidades de Castilla-La Mancha, Dirección General del Medio Ambiente

  • Chauve A, Mallet C, Bretar F, Durrieu S, Deseilligny MP, Puech W (2007) Processing full-waveform lidar data: modelling raw signals. In: International archives of photogrammetry, remote sensing and spatial information sciences, pp 102–107

  • CNIG (National Center of Geographic Information in Spain) (2009) Technical specifications for the National Plan of Aerial Orthophotography (PNOA). ftp://pnoa.ign.es. Accessed 01 Nov 2014

  • CNIG (National Center of Geographic Information in Spain) (2015). http://centrodedescargas.cnig.es/CentroDescargas/. Accessed 16 July 2015

  • Dolenc A, Makela I (1993) Some efficient procedures for correcting triangulated models. In: Proceedings of solid freeform fabrication symposium, pp 126–134

  • D’Oliveira MV, Reutebuch SE, McGaughey RJ, Andersen HE (2012) Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens Environ 124:479–491

    Article  Google Scholar 

  • Eid T, Gobakken T, Naesset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19(6):512–523

    Article  Google Scholar 

  • Estornell J, Ruiz LA, Velazquez-Marti B, Hermosilla T (2012) Assessment of factors affecting shrub volume estimations using airborne discrete-return LiDAR data in Mediterranean areas. J Appl Remote Sens 6(1):063544

    Article  Google Scholar 

  • Fan YZ, Tam BS, Zhou J (2008) Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order. Linear Multilinear Algebra 56(4):381–397

    Article  Google Scholar 

  • Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91

    Article  Google Scholar 

  • Gonzalez E, Dieguez U, Miranda D (2012) Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85(2):281–292

    Article  Google Scholar 

  • González-Aguilera D, Guerrero D, Hernández-López D, Rodríguez-Gonzálvez P, Pierrot M, Fernández-Hernández J (2013) PW, photogrammetry workbench

  • González-Ferreiro E, Diéguez-Aranda U, Crecente-Campo F, Barreiro-Fernández L, Miranda D, Castedo-Dorado F (2014) Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. Int J Wildl Fire 23(3):350–362

    Article  Google Scholar 

  • Gupta S, Weinacker H, Koch B (2010) Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data. Remote Sens 2(4):968–989

    Article  Google Scholar 

  • Guskov I, Wood ZJ (2001) Topological noise removal. In: 2001 graphics interface proceedings, Ottawa, Canada, 19

  • Hernández-Lopez D, Felipe B, González D, Arias B (2013) An automatic approach to UAV flight planning and control for photogrammetric applications: a test case in the Asturias Region (Spain). Photogramm Eng Remote Sens 79(1):87–98

    Article  Google Scholar 

  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29(5):1339–1366

    Article  Google Scholar 

  • IGN (2015) http://pnoa.ign.es/presentacion. Accessed 16 July 2015

  • Jaakkola A, Hyyppä J, Kukko A, Yu X, Kaartinen H, Lehtomäki M, Lin Y (2010) A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J Photogramm Remote Sens 65:514–522

    Article  Google Scholar 

  • Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R (2012) Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogramm Remote Sens 74:78–84

    Article  Google Scholar 

  • Kankare V, Vastaranta M, Holopainen M, Räty M, Yu X, Hyyppä J, Viitala R (2013) Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens 5(5):2257–2274

    Article  Google Scholar 

  • Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30(2–3):271–274

    Google Scholar 

  • Kraus K (2007) Photogrammetry, 2007. Geometry from images and laser scans. Walter de Gruyter

  • Lim KS, Treitz PM (2004) Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand J For Res 19(6):558–570

    Article  Google Scholar 

  • Lisein J, Pierrot M, Bonnet S, Lejeune P (2013) A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4(4):922–944

    Article  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  • Magnussen S, Boudewyn P, Wulder MA, Seemann D (2000) Predictions of forest inventory cover type proportions using landsat TM. Silva Fennica 34(4):351–370

    Article  Google Scholar 

  • Magnussen S, Naesset E, Wulder MA (2007) Efficient multiresolution spatial predictions for large data arrays. Remote Sens Environ 109(4):451–463

    Article  Google Scholar 

  • Magnusson M, Fransson JES, Olsson H (2007) Aerial photo-interpretation using Z/I DMC images for estimation of forest variables. Scand J For Res 22(3):254–266

    Article  Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64(1):1–16

    Article  Google Scholar 

  • Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66(11):1367–1372

    Google Scholar 

  • Mora B, Wulder MA, Hobart GW, White JC, Bater CW, Gougeon FA, Coops NC (2013) Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots. Int J Remote Sens 34(12):4406–4424

    Article  Google Scholar 

  • Naesset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61(2):246–253

    Article  Google Scholar 

  • Naesset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19(2):164–179

    Article  Google Scholar 

  • Naesset E, Bollandsas OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94(4):541–553

    Article  Google Scholar 

  • Navarro-Cerrillo RM, del Campo AD, Ceacero CJ, Quero JL, Hermoso de Mena J (2014) On the importance of topography, site quality, stock quality and planting date in a semiarid plantation: feasibility of using low-density LiDAR. Ecol Eng 67:25–38

    Article  Google Scholar 

  • NavCen (2008) Global positioning system standard positioning service performance standar, 4th edn. US Department of Defense: Position, Navigation and Timing Executive Committee, Washington

  • Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24(2):247–267

    Article  Google Scholar 

  • Nelson R, Oderwald R, Gregoire TG (1997) Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sens Environ 60(3):311–326

    Article  Google Scholar 

  • Nelson R, Parker G, Hom M (2003) A portable airborne laser system for forest inventory. Photogramm Eng Remote Sens 69(3):267–273

    Article  Google Scholar 

  • Ortega-Terol D, Moreno MA, Hernández-López D, Rodríguez-Gonzálvez P (2014) Survey and classification of large woody debris (LWD) in streams using generated low-cost geomatic products. Remote Sens 6:11770–11790

    Article  Google Scholar 

  • Pierrot-Deseilligny M, Clery I (2011) An open source bundle adjustment software for automatic calibration and orientation of set of images. In: Apero, ISPRS symposium, 3DARCH11, Trento, Italy, March 2–4, pp 269–276

  • Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Comput Electron Agric 37(1):71–95

    Article  Google Scholar 

  • Premerlani W, Bizard P (2014) Direction cosine matrix IMU: theory. http://gentlenav.googlecode.com/files/DCMDraft2.pdf. Accessed 20 Dec 2014

  • Richardson JJ, Moskal LM (2011) Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sens Environ 115(10):2640–2651

    Article  Google Scholar 

  • Rock SJ, Wozny MJ (1992) Generating topological information from a bucket of facets. In: Solid freeform fabrication symposium proceedings, pp 251–259. The University of Texas at Austin, Austin

  • St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29(11):3343–3364

    Article  Google Scholar 

  • Takasu T (2009) RTKLIB: open source program package for RTK-GPS. FOSS4G, Tokyo, Japan

  • Tao W, Lei Y, Mooney P (2011) Dense point cloud extraction from UAV captured images in forest area. In: Proceedings of the 2011 IEEE international conference on spatial data mining and geographical knowledge services (ICSDM), pp 389–392

  • Varnuška M, Parus J, Kolingerová I (2005) Simple holes triangulation in surface reconstruction. In: Proceedings of ALGORITMY, pp 280–289

  • Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543

    Article  Google Scholar 

  • Wang Z, Boesch R, Ginzler C (2007) Color and lidar data fusion: application to automatic forest boundary delineation in aerial images. Int Arch Photogramm Remote Sens Spat Inf Sci [CD] 36(1):W51

    Google Scholar 

  • Weinacker H, Koch B, Heyder U, Weinacker R (2004) Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spat Inf Sci 36(Part 8):50–55

    Google Scholar 

  • White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Woods M (2013a) A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. For Chron 89(6):722–723

    Article  Google Scholar 

  • White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M (2013b) The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3):518–536

    Article  Google Scholar 

  • Willers JL, Wu J, O’Hara C, Jenkins JN (2012) A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications. Comput Electron Agric 82:15–22

    Article  Google Scholar 

  • Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S (2008a) Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8(1):529–560

    Article  PubMed Central  Google Scholar 

  • Wulder MA, White JC, Hay GJ, Castilla G (2008b) Towards automated segmentation of forest inventory polygons on high spatial resolution satellite imagery. For Chron 84(2):221–230

    Article  Google Scholar 

  • Wulder MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC, Gobakken T (2012) Lidar sampling for large-area forest characterization: a review. Remote Sens Environ 121:196–209

    Article  Google Scholar 

  • Wulder MA, Coops NC, Hudak AT, Morsdorf F, Nelson R, Newnham G, Vastaranta M (2013) Status and prospects for LiDAR remote sensing of forested ecosystems. Can J Remote Sens 39(sup1):S1–S5

    Article  Google Scholar 

Download references

Acknowledgments

This research arose as a pilot project in collaboration with the Public Land and Natural Spaces Service, belonging to the Peripheral Services of the Agricultural Commission of the Regional Government of Castilla-La Mancha; the Institute for Development of the University of Castilla-La Mancha; the Forestry and Natural Spaces Service; the Agriculture, Environment and Rural Development Department of the Castilla-La Mancha Regional Government; and the USAL research group Geomatic Technologies for the 3D digitalisation and modelling of complex objects (TIDOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Herrero-Huerta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Priesack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero-Huerta, M., Felipe-García, B., Belmar-Lizarán, S. et al. Dense Canopy Height Model from a low-cost photogrammetric platform and LiDAR data. Trees 30, 1287–1301 (2016). https://doi.org/10.1007/s00468-016-1366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1366-9

Keywords