Skip to main content

Advertisement

Log in

Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Striking hydro-climatic differences of 2 years (wet; dry) dramatically control the increment pattern of L. huasango in varying extent, even causing a “growth collapse” during the La Niña drought 2010/2011.

Abstract

We present the first multi-year long time series of local climate data in the seasonally dry tropical forest in Southern Ecuador and related growth dynamics of Loxopterygium huasango, a deciduous tree species. Local climate was investigated by installing an automatically weather station in 2007 and the daily tree growth variability was measured with high-resolution point dendrometers. The climatic impact on growth behaviour was evaluated. Hydro-climatic variables, like precipitation and relative humidity, were the most important factors for controlling tree growth. Changes in rainwater input affected radial increment rates and daily amplitudes of stem diameter variations within the study period from 2009 to 2013. El Niño Southern Oscillation (ENSO) related variations of tropical Pacific Ocean sea surface temperatures influenced the trees’ increment rates. Average radial increments showed high inter-annual (up to 7.89 mm) and inter-individual (up to 3.88 mm) variations. Daily amplitudes of stem diameter variations differed strongly between the two extreme years 2009 (wet) and 2011 (dry). Contrary to 2009, the La Niña drought in 2011 caused a rapid reduction of the daily amplitudes, indicating a total cessation (‘growth collapse’) of stem increment under ENSO-related drought conditions and demonstrating the high impact of climatic extreme events on carbon sequestration of the dry tropical forest ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal AA (1996a) Seed germination of Loxopterygium guasango, a threatened tree of coastal Northwestern South America. Trop Ecol 37:273–276

    Google Scholar 

  • Agrawal AA (1996b) Reforestation in Ecuador’s dry forest. Desert Plants 12:12–14

    Google Scholar 

  • Appelhans T (2013) Metvurst: METeorological visualisation utilities using R for science and teaching. https://metvurst.wordpress.com/. Accessed 31 Aug 2015

  • Bazo J, de las Nieves Lorenzo M, Porfirio da Rocha R (2013) Relationship between monthly rainfall in NW Peru and tropical sea surface temperature. Adv Meteorol. doi:10.1155/2013/152875

  • Bendix J, Trachte K, Palacopis E, Rollenbeck R, Göttlicher D, Nauss T, Bendix A (2011) El Niño meets La Niña—anomalous rainfall patterns in the “Traditional” El Niño region of Southern Ecuador. Erdkd 65:151–167

    Article  Google Scholar 

  • Biondi F, Hartsough P (2010) Using automated point dendrometers to analyze tropical treeline stem growth at Nevado de Colima, Mexico. Sens 10(6):5827–5844

    Article  Google Scholar 

  • Biondi F, Rossi S (2014) Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records. Intern J Biometeorol. doi:10.1007/s00484-0-014-0907-4

    Google Scholar 

  • Biondi F, Hartsough P, Estrada I (2005) Daily weather and tree growth at the tropical treeline of North America. Arctic Antarct Alp Res 37:16–24

    Article  Google Scholar 

  • Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602

    Google Scholar 

  • Boninsegna J, Argollo J, Aravena J, Brichivich J, Christie D, Ferrero M, Lara A, Le Quesne C, Luckmann B, Masiokas M, Morales M, Oliveiera J, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Paleogeogr Paleoclimatol Paleoecol 281:210–228

    Article  Google Scholar 

  • Borchert R (1994) Water status and development of tropical trees during seasonal drought. Trees 8:115–125

    Article  Google Scholar 

  • Borchert R, Renner SR, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627–629

    Article  CAS  PubMed  Google Scholar 

  • Bräuning A, von Schnakenburg P, Volland-Voigt F, Peters T (2008) Seasonal growth dynamics and its climate forcing in a tropical mountain rain forest in southern Ecuador. Tree Rings Archaeol Climatol Ecol 6:27–30

    Google Scholar 

  • Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009a) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkd 63:337–345

    Article  Google Scholar 

  • Bräuning A, Volland-Voigt F, von Schnakenburg P (2009b) Jahrringe als Ausdruck von Klimabedingungen und Lebensform: wie wachsen Tropenbäume? Biol unserer Zeit 39:124–132

    Article  Google Scholar 

  • Brienen R, Lebrija-Trejos E, Zuidema P, Marinez-Ramos M (2010) Climate–growth analysis for Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012

    Article  Google Scholar 

  • Bullock SH, Mooney HA, Medina E (1995) Seasonally dry tropical forests, 1st edn. Cambridge University Press, Cambridge Books, Cambridge. doi:10.1017/CBO9780511753398

    Book  Google Scholar 

  • Bunn A (2008) A dendrochronology program library in R. Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Burnham RJ, Carranco N (2004) Miocene winged fruits of Loxopterygium (Anacardiaceae) from the ecuadorian Andes. Am J Bot 91:1767–1773

    Article  PubMed  Google Scholar 

  • Cardoso F, Marques R, Botosso P, Marques M (2012) Stem growth and phenology of two tropical trees in contrasting soil conditions. Plant Soil 354:269–281

    Article  CAS  Google Scholar 

  • Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. J Ecol 82(4):865–872

    Article  Google Scholar 

  • Cotrill DA (2012) Seasonal climate summery southern hemisphere (spring 2011): La Niña returns. Aust Meteorol Oceanograph J 62:179–192

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intraannual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Article  Google Scholar 

  • Do FC, Goudiaby VA, Gimenez O, Diagne AL, Diouf M, Rocheteau A, Akpo LE (2005) Environmental influence on canopy phenology in the dry tropics. Forest Ecol Manag 215:319–328

    Article  Google Scholar 

  • Drew DM, Downes GD (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Denrochronologia 27:159–172

    Article  Google Scholar 

  • Drew DM, Richards AE, Cook GD, Downes GM, Gill W, Baker PJ (2014) The number of days on which increment occurs is the primary determinant of annual ring width in Callitris intratropica. Trees 28:31–40

    Article  Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trees 14:11–16

    Google Scholar 

  • Estrada-Medina H, Santiago LS, Graham RC, Allan MF, Jimenez-Osornio JJ (2013) Source water, phenology and growth of two tropical dry forest tree species growing on shallow karst soils. Trees 27:1297–1307

    Article  Google Scholar 

  • Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18:442–451

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate-growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641

    Article  Google Scholar 

  • Gebrekirstos A, Bräuning A, Sass-Klaassen U, Mbow C (2014) Opportunities and applications of dendrochronology in Africa. Curr Opin Env Sustain 6(1):48–53

    Article  Google Scholar 

  • Gonzáles Estrella JE, Garcia Riofrio JC, Correa Conde J (2005) Especies forestales del bosqoue seco “Cerro Negro-Cazaderos” Zapotillo—Puyango—Loja Ecuador. Fundación Ecológica Arcoiris, Loja

    Google Scholar 

  • Grogan J, Schulze M (2012) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil. Biotropica 44(3):331–340

    Article  Google Scholar 

  • Heidelberger M, Rao C (1966) Immunchemical properties of hualtaco gum. Immunology 10(6):543–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010–2011 La Niña phenomenon in Columbia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25

    Article  Google Scholar 

  • Jiang Y, Wang B-Q, Dong M-U, Huang Y-M, Wang M-C, Wang B (2015) Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29:87–96

    Article  Google Scholar 

  • Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70

    Article  Google Scholar 

  • Krepkowski J, Gebrekirstos A, Shibistova O, Bräuning A (2013) Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest. New Phytol 199:431–440

    Article  Google Scholar 

  • Lagos P, Silva Y, Nickl E, Mosquera K (2008) El Niño-related precipitation variability in Perú. Adv Geosci 14:231–237

    Article  Google Scholar 

  • Linares-Palomino R, Ponce-Alvarez SI (2005) Tree community patterns on seasonally dry forests in the Cerros de Amotape Cordillera, Tumbes, Peru. Forest Ecol Manag 209:261–272

    Article  Google Scholar 

  • Linares-Palomino R, Ponce-Alvarez SI (2009) Structural patterns and floristics of a seasonally dry forest in Reserva Ecológica Chaparri, Lambayeque, Peru. Tropic Ecol 50:305–314

    Google Scholar 

  • Linares-Palomino R, Kvist LP, Aguirre-Mendoza Z, Gonzales-Inca C (2010) Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forest. Biodivers Conserv 19:169–185

    Article  Google Scholar 

  • Maestre F, Quero J, Gotelli N, Escudero A, Ochoa V, Delgado-Baquerizo M, García Gómez M, Bowker M, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição A, Cabrera O, Chaieb M, Derak M, Eldridge D, Espinosa C, Florentino A, Gaitán J, Gatica G, Ghiloufi W, Gómez-González S, Gutiérrez R, Hernández R, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau R, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes D, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga J, Wang D, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. J Q Sci 19:713–720

    Article  Google Scholar 

  • Méndez-Alonso R, Pineda-García F, Paz H, Rosell JA, Olson JC (2013) Leaf phenology is associated with soil water availability and xylem traits in a tropical dry forest. Trees 27:745–754

    Article  Google Scholar 

  • Ministerio de Agricultura y Ganaderia (1984) Macara—Mapa de Suelos, Quito

  • Ministerio de Recursos Naturales y Energeticos (1982) National geological map of the republic of Ecuador, Quito

  • Pennington RT, Lewis G, Ratter JA (2006) Neotropical savannas and dry forests: plant diversity. Biogeography and observation. CRC Press, Florida

    Book  Google Scholar 

  • Pompa-García M, Miranda-Aragón L, Aguirre-Salado CA (2015) Tree growth response to ENSO in Durango, Mexico. Int J Biometerol 59:89–97

    Article  Google Scholar 

  • Pucha Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past 120 years reconstructed from tree rings of a tropical dry forest in Southern Ecuador. Global Planet Change 133:65–78

    Article  Google Scholar 

  • Reich P, Borchert R (1982) Phenology and ecophysiology of the tropical tree, Tabebuia neochrysantha (Bignoniaceae). Ecology 63:294–299

    Article  Google Scholar 

  • Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186

    Article  Google Scholar 

  • Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16

    Article  Google Scholar 

  • Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andes dry tropical forests. J Biogeogr 39:884–900

    Article  Google Scholar 

  • Sass-Klaassen U, Couralet C, Sahle Y, Sterck F (2008) Juniper from Ethiopia contains a large-scale precipitation signal. Int J Plant Sci 169(8):1057–1065

    Article  Google Scholar 

  • Sayer EJ, Newbery DM (2003) The role of tree size in the leafing phenology of seasonally dry tropical forest in Belize, Central America. J Trop Ecol 19:539–548

    Article  Google Scholar 

  • Schöngart J, Junk W, Piedade M, Ayres J, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and El-Niño-Southern Oscillation effect. Glob Change Biol 10:683–692

    Article  Google Scholar 

  • Steppe K, Sterck F, Deslauries A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. doi:10.1016/j.tplants.2015.03.015

    Google Scholar 

  • Takahashi K (2004) The atmospheric circulation associated with extreme rainfall events in Piura, Peru, during the 1997–1998 and 2002 El Niño events. Ann Geophys 22:3917–3926

    Article  Google Scholar 

  • Tobin S (2012) Seasonal climate summary southern hemisphere (winter 2011): a dry season in the lull of La Niña events. Aust Meteorol Oceanograph J 62:97–110

    Google Scholar 

  • Tobin S, Skinner TCL (2012) Seasonal climate summary southern hemisphere (autumn 2011): one of the strongest La Niña events on record begins to decline. Aust Meteorol Oceanograph J 62:39–50

    Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. B Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382

    Article  Google Scholar 

  • United States Department of Agriculture, Natural Resources Conservation Service (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. Government Printing Office Washington, Washington

    Google Scholar 

  • Valdez-Hernández M, Andrade J, Jackson P, Rebolledo-Vieyra M (2010) Phenology of five tree species of a tropical forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil 329:144–171

    Article  Google Scholar 

  • Valencia R, Cerón C, Palacios W, Sierra R. (1999) Las Formaciones naturales de la Sierra del Ecuador. In: Sierra R (edn) Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental. Proyecto INEFAN/GEF y Ecociencia Quito-Ecuador, pp 79–108

  • Volland-Voigt F, Bräuning A, Ganzhi O, Peters T, Maza H (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48

    Article  Google Scholar 

  • Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885–3888

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000) Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Climate 13:2520–2535

    Article  Google Scholar 

  • Wagner F, Rossi V, Aubry-Kientz M, Bonal D, Dalitz H (2014) Pan-tropical analysis of climate effects on seasonal tree growth. PLoS ONE 9(3):e92337. doi:10.1371/journal.pone.0092337

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang B, Deslauriers A, Bräuning A (2014) Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 29:25–34

    Article  Google Scholar 

  • Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D (1997) Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78:2542–2558

    Article  Google Scholar 

  • Wils G, Sass-Klassen U, Eshetu Z, Bräuning A, Gebrekirstos A, Couralet C, Robertson I, Touchan R, Koprowski M, Conway D, Briffa K, Beeckman H (2011) Dendrochronology in the dry tropics: the Ethiopian case. Trees 25:345–354

    Article  Google Scholar 

  • Wimmer R, Downes GM, Evans R (2002) High resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524

    Article  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth pattern of tropical trees from Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

  • Zalamea M, González G (2008) Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. Biotropica 40:295–304

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235.2014.06.3

Download references

Acknowledgments

SSp and FV acknowledge Oswaldo Ganzhi and Volker Raffelsbauer for field work support. SSp and FV also thank Cathrin Meinardus for constructive and fruitful discussions. We also thank Stephan Adler for preparing the map. This study was supported by the German Research Foundation (DFG) by funding the project BR 1895/14 (FOR 816) and BR 1895/23 (PAK 823). DP acknowledges support by the German Academic Exchange Service (DAAD). We also thank Naturaleza y Cultura Internacional (NCI, Loja, Ecuador) for their help in accessing the Laipuna Nature Reserve. The authors would like to thank the reviewers for their invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanne Spannl or Franziska Volland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Buckeridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spannl, S., Volland, F., Pucha, D. et al. Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees 30, 1245–1258 (2016). https://doi.org/10.1007/s00468-016-1362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1362-0

Keywords

Navigation