, Volume 30, Issue 3, pp 825–837 | Cite as

Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress

  • Nan Zhao
  • Shaojie Wang
  • Xujun Ma
  • Huipeng Zhu
  • Gang Sa
  • Jian Sun
  • Nianfei Li
  • Chenjing Zhao
  • Rui Zhao
  • Shaoliang Chen
Original Article
Part of the following topical collections:
  1. Salinity


Key message

eATP mediates cellular K + and Na + homeostasis in two contrasting poplar species differing in salt tolerance.


Using the non-invasive micro-test technology (NMT), the effects of extracellular ATP (eATP) on salt-altered flux profiles of K+, Na+, and H+ were investigated in salt-tolerant poplar species, Populus euphratica and salt-sensitive P. popularis. A short-term NaCl (100 mM NaCl, 12 h) resulted in a Na+ efflux and a correspondingly increased H+ influx in P. euphratica cells, but the effect was not seen in P. popularis. ATP (50 μM) enhanced exchange of Na+ with H+ in salt-stressed cells of two species (6, 12 h), especially in P. popularis. However, the ATP-stimulated Na+ efflux and H+ influx were significantly inhibited by amiloride (a Na+/H+ antiporter inhibitor) or sodium orthovanadate (a plasma membrane H+-ATPase inhibitor), indicating that the ATP induction of Na+ extrusion resulted from an active Na+/H+ antiport across the plasma membrane (PM). NaCl accelerated K+ efflux in the two species, with a more pronounced effect in the salt-sensitive poplar. The salt-induced K+ efflux was markedly restricted by the K+ channel blocker, tetraethylammonium chloride, indicating that the K+ efflux is mediated by depolarization-activated outward rectifying K+ channels and non-selective cation channels. ATP benifited poplar cells, especially the salt-sensitive P. popularis, in maintaining K+ homeostasis under external salinity. This was likely the result of activated H+ pump in the PM, which restricted the K+ efflux through the inhibition of depolarization-activated K+ channels in both species. Na+ and K+ flux recordings revealed that non-hydrolysing analogues of ATP, αβ-meATP (50 μM), and ATPγS (50 μM) produced an effect similar to that of the hydrolysable form but with a more pronounced effect. However, ADP- and AMP-stimulated cells (50 μM) exhibited behaviors different from those invoked by ATP, αβ-meATP, and ATPγS treatments. eATP signalling in K+ and Na+ homeostasis was blocked by the antagonists of animal P2 receptors, PPADS, and suramin. Moreover, ATP-stimulated Na+ extrusion and reduction of K+ loss in NaCl-stressed cells were inhibited by LaCl3 (an inhibitor of Ca2+-permeable channels) and DPI (an inhibitor of PM NADPH oxidase), indicating that ATP signalling was mediated via second messengers, H2O2 and Ca2+, in the two poplars differing in salt tolerance.


eATP Salt stress signalling K+ flux Na+ flux H+ flux Populus euphratica Populus popularis Non-invasive micro-test technology (NMT) 



The research was supported jointly by the National Natural Science Foundation of China (Grant Nos. 31270654, 31570587, 31200207, and 31200470), the Research Project of the Chinese Ministry of Education (Grant No.113013A), the key project for Oversea Scholars by the Ministry of Human Resources and Social Security of PR China (Grant No. 2012001), the Program for Changjiang Scholars and Innovative Research Teams in University (Grant No. IRT13047), the Program of Introducing Talents of Discipline to Universities (111 Project, Grant No. B13007), and Beijing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates, Beijing Forestry University (Grant No. S201510022037).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650CrossRefPubMedGoogle Scholar
  2. Cao Y, Tanaka K, Nguyen CT, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Curr Opin Plant Biol 20:82–87CrossRefPubMedGoogle Scholar
  3. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333CrossRefPubMedGoogle Scholar
  4. Chen S, Fritz E, Wang S, Hüttermann A, Liu Q, Jiang X (2000) Cellular distribution of ions in salt-stressed cells of Populus euphratica and P. tomentosa. For Stud China 2:8–16Google Scholar
  5. Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002a) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168:217–230CrossRefGoogle Scholar
  6. Chen S, Li J, Wang T, Wang S, Polle A, Hüttermann A (2002b) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233CrossRefGoogle Scholar
  7. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246CrossRefGoogle Scholar
  8. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen S, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124CrossRefGoogle Scholar
  10. Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2005) Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR (2009) Extracellular ATP is a regulator of pathogen defence in plants. Plant J 60:436–448CrossRefPubMedGoogle Scholar
  12. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294CrossRefPubMedGoogle Scholar
  13. Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J 53:554–565CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010a) Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ (2010b) Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol Biol 74:423–435CrossRefPubMedGoogle Scholar
  16. Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres J, Tang W, Kim J, Roux SJ (2011) Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. Plant Physiol 156:1740–1753CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706CrossRefPubMedPubMedCentralGoogle Scholar
  18. Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM (2003) Is ATP a signaling agent in plants? Plant Physiol 133:456–461CrossRefPubMedPubMedCentralGoogle Scholar
  19. Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913CrossRefPubMedGoogle Scholar
  20. Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S (2015) Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol 169:530–548CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu Z, Chen S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269CrossRefPubMedGoogle Scholar
  22. Foresi NP, Laxalt AM, Tonon CV, Casalongue CA, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL (2012) Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein alpha subunit and reactive oxygen species. Mol Plant 5:852–864CrossRefPubMedGoogle Scholar
  24. Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim SH, Yang SH, Kim TJ, Han JS, Suh JW (2009) Hypertonic stress increased extracellular ATP levels and the expression of stress-responsive genes in Arabidopsis thaliana seedlings. Biosci Biotechnol Biochem 73:1252–1256CrossRefPubMedGoogle Scholar
  26. Lang T, Sun H, Li N, Lu Y, Shen Z, Jing X, Xiang M, Shen X, Chen S (2014) Multiple signaling networks of extracellular ATP, hydrogen peroxide, calcium, and nitric oxide in the mediation of root ion fluxes in secretor and non-secretor mangroves under salt stress. Aquat Bot 119:33–43CrossRefGoogle Scholar
  27. Lew RR, Dearnaley JDW (2000) Extracellular nucleotide effects on the electrical properties of growing Arabidopsis thaliana root hairs. Plant Sci 153:1–6CrossRefGoogle Scholar
  28. Lu Y, Li N, Sun J, Hou P, Jing X, Zhu H, Deng S, Han Y, Huang X, Ma X, Zhao N, Zhang Y, Shen X, Chen S (2013) Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiol 33:81–95CrossRefPubMedGoogle Scholar
  29. Ma X, Deng L, Li J, Zhou X, Li N, Zhang D, Lu Y, Wang R, Sun J, Lu C, Zheng X, Fritz E, Hüttermann A, Chen S (2010) Effect of NaCl on leaf H+-ATPase and the relevance to salt tolerance in two contrasting poplar species. Trees 24:597–607CrossRefGoogle Scholar
  30. Ma T, Wang J, Zhou G, Yue Z, Hu Q, Chen Y, Liu B, Qiu Q, Wang Z, Zhang J, Wang K, Jiang D, Gou C, Yu L, Zhan D, Zhou R, Luo W, Ma H, Yang Y, Pan S, Fang D, Luo Y, Wang X, Wang G, Wang J, Wang Q, Lu X, Chen Z, Liu J, Lu Y, Yin Y, Yang H, Abbott RJ, Wu Y, Wan D, Li J, Yin T, Lascoux M, Difazio SP, Tuskan GA, Wang J, Liu J (2013) Genomic insights into salt adaptation in a desert poplar. Nat Commun 4:2797PubMedGoogle Scholar
  31. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012CrossRefPubMedPubMedCentralGoogle Scholar
  32. Polle A, Chen S (2015) On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell Environ 38:1794–1816CrossRefPubMedGoogle Scholar
  33. Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31:452–461CrossRefPubMedGoogle Scholar
  34. Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ (2009) Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050CrossRefPubMedGoogle Scholar
  36. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels. Plant Physiol 141:1653–1665CrossRefPubMedPubMedCentralGoogle Scholar
  37. Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009a) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009b) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29:1175–1186CrossRefPubMedGoogle Scholar
  40. Sun J, Li L, Liu M, Wang M, Ding M, Deng S, Lu C, Zhou X, Shen X, Zheng X, Chen S (2010a) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult (PCTOC) 103:205–215CrossRefGoogle Scholar
  41. Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010b) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958CrossRefPubMedGoogle Scholar
  42. Sun J, Zhang CL, Deng SR, Lu CF, Shen X, Zhou XY, Zheng XJ, Hu ZM, Chen SL (2012a) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell Environ 35:893–916CrossRefPubMedGoogle Scholar
  43. Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012b) Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS One 7:e53136CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tanaka K, Gilroy S, Jones AM, Stacey G (2010) Extracellular ATP signaling in plants. Trends Cell Biol 20:601–608CrossRefPubMedGoogle Scholar
  45. Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380CrossRefPubMedGoogle Scholar
  47. Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31:1063–1073CrossRefPubMedGoogle Scholar
  48. Vanegas D, Clark G, Cannon AE, Roux S, Chaturvedi P, McLamore ES (2015) A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 74:37–44CrossRefPubMedGoogle Scholar
  49. Wang R, Chen S, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591CrossRefGoogle Scholar
  50. Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957CrossRefPubMedGoogle Scholar
  51. Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785CrossRefPubMedGoogle Scholar
  52. Zhang X, Shen Z, Sun J, Yu Y, Deng S, Li Z, Sun C, Zhang J, Zhao R, Shen X, Chen S (2015) NaCl-elicited, vacuolar Ca2+ release facilitates prolonged cytosolic Ca2+ signaling in the salt response of Populus euphratica cells. Cell Calcium 57:348–365CrossRefPubMedGoogle Scholar
  53. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nan Zhao
    • 1
  • Shaojie Wang
    • 1
  • Xujun Ma
    • 1
  • Huipeng Zhu
    • 1
  • Gang Sa
    • 1
  • Jian Sun
    • 2
  • Nianfei Li
    • 1
  • Chenjing Zhao
    • 1
  • Rui Zhao
    • 1
  • Shaoliang Chen
    • 1
  1. 1.College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.College of Life ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations