Skip to main content

Advertisement

Log in

Dendroclimatological potential of three juniper species from the Turkestan range, northwestern Pamir-Alay Mountains, Uzbekistan

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Intensity and magnitude of the growth-climate relationship depends on juniper species and sites. Juniperus seravschanica at low elevations shows highest potential for April–September drought reconstruction in the Turkestan range (Pamir-Alay), Uzbekistan.

Abstract

We present a detailed dendroclimatological study of three juniper species, Juniperus seravschanica Kom., Juniperus semiglobosa Regel and Juniperus turkistanica Kom., sampled at six sites of different elevation (2100–2700 m a.s.l.), exposition (west and south) and steepness (10°–30°) in the Zaamin National Park, Turkestan range, Pamir-Alay mountain system in eastern Uzbekistan. Simple correlation statistics and redundancy analyses were applied to detect species- and site-specific climate responses during the twentieth century, which were additionally investigated in the high-frequency domain by identifying extreme growth years. Our results show that tree-ring formation of J. seravschanica at our low-elevation site is strongly limited by April to September drought conditions, while J. semiglobosa inherits a weak and variable climate response with respect to elevation. J. turkistanica growth at high altitudes is positively associated with warm spring and summer temperatures. Species-specific growth extremes are triggered by incoming air masses from the Atlantic and Arctic, highlighting the connection of synoptic climate regimes across Eurasia. From a dendroclimatic perspective, J. seravschanica exhibits a high potential for reconstructing past drought and pluvials, but under sustained temperature rise also J. semiglobosa will likely increase its sensitivity to drought. Moreover, J. turkistanica at its distribution limit at the tree line is a suitable proxy of summer temperature. Our findings clearly demonstrate that a careful selection of the site, overall topography and elevation as well as the different juniper species are important for successfully reconstructing past climate in Uzbekistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams RP (2011) Junipers of the World: the genus Juniperus, 3rd edn. Trafford Publishing Co, Bloomington

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, González P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684

    Article  Google Scholar 

  • Botman E (2008) Vulnerability of juniper formations to climate change on the territory of Uzbekistan. In: SANIGMI (ed) Climate change consequences in Uzbekistan, adaptation issues. Information on fulfillment of commitments to the UNFCCC by Uzbekistan, 7th edn. Tashkent, pp 68–75

  • Botman E (2009) Forest rehabilitation in the Republic of Uzbekistan. In: Lee DK, Kleine M (eds) IUFRO World Series. IUFRO (International Union of Forestry Research Organizations) Secretariat, Vienna, pp 253–299

    Google Scholar 

  • Bräuning A (1994) Dendrochronology for the last 1400 years in eastern Tibet. GeoJournal 34(1):75–95

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102(42):15144–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate—growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Chen F, Yuan YJ, Chen FH, Wei WS, Yu SL, Chen XJ, Fan ZA, Zhang RB, Zhang TW, Shang HM, Qin L (2013) A 426-year drought history for Western Tian Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo-Pacific Oceans. Holocene 42:1008–1021

    Google Scholar 

  • Cook ER, Krusic PJ (2005) Program ARSTAN: A tree-ring standardization program based on detrending and autoregressive time series modelling, with interactive graphics. Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades

    Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370

    Article  Google Scholar 

  • Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dullinger S, Dirnbock T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252

    Article  Google Scholar 

  • Esper J (2000) Palaoklimatische Untersuchungen an Jahrringen im Karakorum und Tien Shan Gebirge (Zentralasien). Bonner Geographische Abhandlungen 103:137

    Google Scholar 

  • Esper J, Treydte K, Gärtner H, Neuwirth B (2002) A tree ring reconstruction of climatic extreme years since 1427 AD for Western Central Asia. Paleobotanist 50:141–152

    Google Scholar 

  • Esper J, Frank DC, Wilson RJ, Büntgen U, Treydte K (2007) Uniform growth trends among central Asian low-and high-elevation juniper tree sites. Trees 21(2):141–150

    Article  Google Scholar 

  • Ewers BE, Oren R, Albaugh TJ, Dougherty PM (1999) Carry-over effects of water and nutrient supply on water use of Pinus taeda. Ecol Appl 9(2):513–525

    Article  Google Scholar 

  • Fan ZX, Bräuning A, Cao KF, Zhu SD (2009) Growth–climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. For Ecol Manag 258:306–313

    Article  Google Scholar 

  • Fisher M (1997) Decline in the juniper woodlands of Raydah reserve in southwestern Saudi Arabia: a response to climate changes? Global Ecol Biogeogr 6:379–386

    Article  Google Scholar 

  • Fritts HC (1976) Tree-rings and climate. Academic, London

    Google Scholar 

  • Fritts HC, Smith DG, Cardis JW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46(4):394–401

    Article  Google Scholar 

  • Gao L, Gou X, Deng Y, Liu W, Yang M, Zhao Z (2013) Climate–growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China. Trees 27(2):379–388

    Article  Google Scholar 

  • Glazirin GE, Gorlanova LA (2005) Oпыт дeндpoклимaтичecкoгo иccлeдoвaния cтлaникoвыx мoжжeвeльникoв нa Зaпaднoм Tянь-Шaнe (Experience of dendrochronological research of prostrate junipers in the western Tien Shan). NIGMI Proceedings 5(250):24–42

    Google Scholar 

  • Glazovskiy AF, Solomina ON (1989) Glacier fluctuations and Picea shrenkiana tree-ring growth at the northern slope of Terskey Alatoo. Materiali Glytsiologicheskikh Issledovany (in Russian) 65:103–110

    Google Scholar 

  • Gou XH, Chen FH, Yang MX, Jacoby G, Fang KY, Tian QH (2008) Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: evidence from tree rings. Sci China Ser D 51(1):41–55

    Article  Google Scholar 

  • Graybill DA, Shiyatov SG, Burmistrov VF (1992) Recent dendrochronological investigations in Kirghizia, USSR. Lundqua Rep 34:123–127

    Google Scholar 

  • Havranek M, Tranquillini W (1995) Physiological processes during their winter dormancy and their ecological significance. In: Smith WK, Hinkley TM (eds) Ecophysiology of coniferous forest. Academic Press, New York, pp 95–124

    Chapter  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axis in redundancy analysis. Method Ecol Evol 2(3):269–277

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Liang EY, Shao XM, Eckstein D, Huang L, Liu XH (2006) Topography- and species- dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. For Ecol Manag 236:268–277

    Article  Google Scholar 

  • Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73(11):963–977

    Article  Google Scholar 

  • Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62(2):285–308

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mukhamedshin KD (1977) Tien Shan juniper forests and their economic significance (Archevniki Tian’-Shanya I ikh lesokhoziaistvennoye znacheniye). Ilim, Frunze

    Google Scholar 

  • NC Uzbekistan (2009) Second National Communication of the Republic of Uzbekistan under the United Nations framework convention on climate change, Tashkent

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21:69–78

    Article  Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301

    Article  PubMed  Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146(2):229–238

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Wagner H (2013) Package ‘vegan’. R packag ver 254:20–8

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin species. Dendrochronologia 22:7–29

    Article  Google Scholar 

  • Pourtahmasi K, Parsapajouh D, Bräuning A, Esper J, Schweingruber FH (2007) Climatic analysis of pointer years in tree-ring chronologies from northern Iran and neighboring high mountain areas. Geoöko 28:27–42

    Google Scholar 

  • Qin C, Yang B, Bräuning A, Sonechkin DM, Huang K (2011) Regional extreme climate events on the northeastern Tibetan Plateau since AD 1450 inferred from tree rings. Global Planet Change 75:143–154

    Article  Google Scholar 

  • Rinn F (1996) TSAPWin. Time series analysis and presentation for dendrochronology and related applications, RINNTECH, Heidelberg

    Google Scholar 

  • Saiko TA, Zonn IS (2000) Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl Geogr 20(4):349–367

    Article  Google Scholar 

  • Savitsky AG, Schlüter M, Taryannikova RV, Agaltseva NA, Chub VE (2007) Current and future impacts of climate change on river runoff in the Central Asian river basins. In: Pahl-Wostl C, Kabat P, Moeltgen J (eds) Adaptive and integrated water management—coping with complexity and uncertainty. Springer, Berlin

    Google Scholar 

  • Schiemann R, Lüthi D, Vidale PL, Schär C (2008) The precipitation climate of Central Asia—intercomparison of observational and numerical data sources in a remote semiarid region. Int J Climatol 28(3):295–314

    Article  Google Scholar 

  • Seim A, Kerstin Treydte K, Trouet V, Fank D, Fonti P, Tegel W, Panayotov M, Fernández- Donado L, Krusic P, Büntgen U (2014) Climate sensitivity of Mediterranean pine growth reveals distinct east–west dipole. Int J Climatol. doi:10.1002/joc.4137

    Google Scholar 

  • Shahgedanova M (2002) Climate at Present and historical past. In: Shahgedanova M (ed) The physical geography of Northern Eurasia. Oxford University Press, Oxford, p 571

    Google Scholar 

  • Solomina O, Maximova O, Cook E (2014) Picea schrenkiana ring width and density at the upper and lower tree limits in the Tien Shan mts Kyrgyz republic as a source of paleoclimatic information. Geogr Environ Sustain 1(7):66–79

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5)

  • Tranquillini W (1964) The physiology of plants at high altitudes. Annu Rev Plant Physiol 15:345–362

    Article  CAS  Google Scholar 

  • Vaganov EA, Schulze ED, Skomarkova MV, Knohl A, Brand WA, Roscher C (2009) Intra- annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161(4):729–745

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. Int J Climatol 19:2818–2834

    Article  Google Scholar 

  • van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(15):L15701. doi:10.1029/2005GL023110

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Winter M-B, Wolff B, Gottschling H, Cherubini P (2009) The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in Southern Kyrgyzstan. Eur J Forest Res 128:531–542

    Article  Google Scholar 

  • Zhang T, Yuan Y, He Q, Wei W, Diushen M, Shang H, Zhang R (2014) Development of tree- ring width chronologies and tree-growth response to climate in the mountains surrounding the Issyk-Kul Lake, Central Asia. Dendrochronologia 32(3):230–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Almazbek Orozumbekov (†) and Alisher Shukurov for organizational support and Pavel Danilov for measuring site ZN3. The study was funded by Kungliga Vetenskapsakademien (KVA, including the Margit Althins Stipendiefond), Svenska Sällskapet för Antropologi och Geografi (SSAG), Wilhelm och Martina Lundgrens Vetenskapsfond and Swedish International Development Cooperation Agency SIDA (project SWE-2009-245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Seim.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seim, A., Tulyaganov, T., Omurova, G. et al. Dendroclimatological potential of three juniper species from the Turkestan range, northwestern Pamir-Alay Mountains, Uzbekistan. Trees 30, 733–748 (2016). https://doi.org/10.1007/s00468-015-1316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1316-y

Keywords

Navigation