Trees

, Volume 30, Issue 1, pp 153–174 | Cite as

Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech

  • Rainer Hentschel
  • Robert Hommel
  • Werner Poschenrieder
  • Rüdiger Grote
  • Jutta Holst
  • Christian Biernath
  • Arthur Gessler
  • Eckart Priesack
Original Article
Part of the following topical collections:
  1. Drought Stress

Abstract

Key message

Beech trees were able to cope with the drought of 2003. Harmful water shortage has been avoided by an effective stomatal closure while use of carbon storage pools may have prevented carbon starvation and growth reduction.

Abstract

We applied hydrodynamic modeling together with a tree ring stable isotope approach to identify the physiological responses of beech trees to changing environmental conditions. The drought conditions of the extreme hot and dry summer in 2003 were hypothesized to significantly influence the radial growth of European beech mainly triggered by the stomatal response towards water scarcity leading, in turn, to a decline in carbon assimilation. The functional–structural single tree modeling approach applied, revealed in fact a strong limitation of water use and carbon gain during drought. However, tree ring width data did not show a clear drought response and no differentiation in radial growth during six subsequent years examined (2002–2007) has been observed. Using integrated results from mechanistic carbon–water balance simulations, tree ring carbon and oxygen isotope analysis and tree ring width measurements we postulate that the suggested drought-induced growth decline has been prevented by the remobilization of stored carbohydrates, an early onset in growth and the relatively late occurrence of the severe drought in 2003. Furthermore, we demonstrate that the stomatal response played a significant role in avoiding harmful water tension that would have caused xylem dysfunction. As a result of the combined investigation with physiological measurements (stable isotope approach) and hydrodynamic modeling of stomatal aperture, we could give insights into the physiological control of mature beech tree functioning under drought. We conclude that beech trees have been operating at their hydraulic limits and that the longer or repeated drought periods would have affected the growth considerably.

Keywords

Fagus sylvatica Intrinsic water use efficiency Leaf physiology Stomatal conductance Carbon and oxygen stable isotopes Hydrodynamic modeling 

Notes

Acknowledgments

This study was conducted as part of the joint research project ‘The carbon and water balance and the development of beech dominated forests—Physiological and competitive mechanisms on different scale levels’ with funding from the German Research Foundation (DFG) to AG under contract numbers GE 1090/8-1 and 9-1.

References

  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA et al (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci USA 106:7063–7066. doi: 10.1073/pnas.0901438106 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  3. Anderegg WRL, Berry JA, Smith DD et al (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109:233–237. doi: 10.1073/pnas.1107891109 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anderegg WRL, Anderegg LDL, Berry JA, Field CB (2014) Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia 175:11–23. doi: 10.1007/s00442-013-2875-5 PubMedCrossRefGoogle Scholar
  5. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352. doi: 10.1007/s004680050229 CrossRefGoogle Scholar
  6. Aranda I, Gil L, Pardos JA (2005) Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl.] in South Europe. Plant Ecol 179:155–167. doi: 10.1007/s11258-004-7007-1 CrossRefGoogle Scholar
  7. Aranda I, Rodriguez-Calcerrada J, Robson TM et al (2012) Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions. For Syst 21:405–417. doi: 10.5424/fs/2012213-02348 Google Scholar
  8. ASCE-EWRI (2005) The ASCE Standardized Reference Evapotranspiration Equation (1801) Technical Committee Report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration. ASCE-EWRI, Alexander Bell Drive, RestonGoogle Scholar
  9. Barnard RL, Salmon Y, Kodama N et al (2007) Evaporative enrichment and time lags between δ 18O of leaf water and organic pools in a pine stand. Plant Cell Environ 30:539–550. doi: 10.1111/j.1365-3040.2007.01654.x PubMedCrossRefGoogle Scholar
  10. Barnard HR, Brooks JR, Bond BJ (2012) Applying the dual-isotope conceptual model to interpret physiological trends under uncontrolled conditions. Tree Physiol 10:1–16. doi: 10.1093/treephys/tps078 Google Scholar
  11. Battipaglia G, Micco DEV, Brand W et al (2014) Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ 37:382–391. doi: 10.1111/pce.12160 PubMedCrossRefGoogle Scholar
  12. Bittner S, Janott M, Ritter D et al (2012a) Functional–structural water flow model reveals differences between diffuse- and ring-porous tree species. Agric For Meteorol 158–159:80–89. doi: 10.1016/j.agrformet.2012.02.005 CrossRefGoogle Scholar
  13. Bittner S, Legner N, Beese F, Priesack E (2012b) Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees. J Geophys Res 117(G01037):1–17. doi: 10.1029/2011JG001780 Google Scholar
  14. Boettger T, Haupt M, Kno K et al (2007) Cellulose preparation methods and mass spectrometric analyses of δ 13C, δ18O, and nonexchangeable δ 2H values in cellulose, sugar, and starch: an interlaboratory. Anal Chem 79:4603–4612. doi: 10.1021/ac0700023 PubMedCrossRefGoogle Scholar
  15. Bohrer G, Mourad H, Laursen TA et al (2005) Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 41:1–17. doi: 10.1029/2005WR004181 CrossRefGoogle Scholar
  16. Brandes E, Wenninger J, Koeniger P, Schindler D, Rennenberg H, Leibundgut C, Mayer H, Gessler A (2007) Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter. Plant Cell Environ 30:113–127. doi: 10.1111/j.1365-3040.2006.01609.x PubMedCrossRefGoogle Scholar
  17. Breda N, Huc R, Granier A et al (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Sci 63:625–644. doi: 10.1051/forest:2006042 CrossRefGoogle Scholar
  18. Bréda N, Granier A, Barataud F, Moyne C (1995) Soil water dynamics in an oak stand. Plant Soil 172:17–27. doi: 10.1007/BF00020856 CrossRefGoogle Scholar
  19. Breshears DD, Adams HD, Eamus D et al (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 4:266. doi: 10.3389/fpls.2013.00266 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Brooks RJ, Barnard HR, Coulombe R, McDonnell JJ (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci 3:100–104. doi: 10.1038/ngeo722 CrossRefGoogle Scholar
  21. Buckley TN, Mott KA (2013) Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699. doi: 10.1111/pce.12140 PubMedCrossRefGoogle Scholar
  22. Buckley T, Mott K, Farquhar G (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785. doi: 10.1046/j.1365-3040.2003.01094.x CrossRefGoogle Scholar
  23. Cailleret M, Nourtier M, Amm A et al (2014) Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann For Sci 71:643–657. doi: 10.1007/s13595-013-0265-0 CrossRefGoogle Scholar
  24. Capdevielle-Vargas R, Estrella N, Menzel A (2015) Multiple-year assessment of phenological plasticity within a beech (Fagus sylvatica L.) stand in southern Germany. Agr Forest Meteorol 211–212:13–22. doi: 10.1016/j.agrformet.2015.03.019 CrossRefGoogle Scholar
  25. Charru M, Seynave I, Morneau F, Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manage 260:864–874. doi: 10.1016/j.foreco.2010.06.005 CrossRefGoogle Scholar
  26. Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264. doi: 10.1071/FP02076 CrossRefGoogle Scholar
  27. Choat B, Jansen S, Brodribb TTJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi: 10.1038/nature11688 PubMedGoogle Scholar
  28. Chuang Y-L, Oren R, Bertozzi AL et al (2006) The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Modell 191:447–468. doi: 10.1016/j.ecolmodel.2005.03.027 CrossRefGoogle Scholar
  29. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi: 10.1038/nature03972 PubMedCrossRefGoogle Scholar
  30. Cochard H, Damour G, Bodet C et al (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418. doi: 10.1111/j.1399-3054.2005.00526.x CrossRefGoogle Scholar
  31. Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752. doi: 10.1051/forest:2002060 CrossRefGoogle Scholar
  32. Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant, Cell Environ 33:1419–1438. doi: 10.1111/j.1365-3040.2010.02181.x Google Scholar
  33. Development Core Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52. doi: 10.1007/BF01323099 PubMedCrossRefGoogle Scholar
  35. Doughty CE, Metcalfe DB, Girardin CAJ et al (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519:78–82. doi: 10.1038/nature14213 PubMedCrossRefGoogle Scholar
  36. Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 39:435–448. doi: 10.1071/FP11190 CrossRefGoogle Scholar
  37. Dreyer E, Le Roux X, Montpied P et al (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232. doi: 10.1093/treephys/21.4.223 PubMedCrossRefGoogle Scholar
  38. Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187. doi: 10.1093/treephys/tps004 PubMedCrossRefGoogle Scholar
  39. Ellsworth D, Reich P (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178. doi: 10.1007/BF00317729 CrossRefGoogle Scholar
  40. Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ 18:43–51. doi: 10.1111/j.1365-3040.1995.tb00542.x CrossRefGoogle Scholar
  41. Ewers B, Oren R (2000) Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol. doi: 10.1093/treephys/20.9.579 PubMedGoogle Scholar
  42. Falge E, Graber W, Siegwolf R, Tenhunen J (1996) A model of the gas exchange response of Picea abies to habitat conditions. Trees 10:277–287. doi: 10.1007/BF02340773 Google Scholar
  43. Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: JR Ehleringer, AE Hall, GD Farquhar (eds) Stable isotopes and plant carbon-water relations, pp. 47–70. Academic Press, Inc., San Diego, CA. doi: 10.1016/B978-0-08-091801-3.50011-8
  44. Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi: 10.1007/BF00386231 PubMedCrossRefGoogle Scholar
  45. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol. doi: 10.1071/PP9820121 Google Scholar
  46. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537. doi: 10.1146/annurev.pp.40.060189.002443 CrossRefGoogle Scholar
  47. Fiala J, Cernikovsky L, Leeuw Fd, Kurfuerst P (eds) (2003) Air pollution by ozone in Europe in summer 2003. European Environment Agency, CopenhagenGoogle Scholar
  48. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216. doi: 10.1256/wea.73.04 CrossRefGoogle Scholar
  49. Flexas J, Ribas-Carbó M, Diaz-Espejo A et al (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621. doi: 10.1111/j.1365-3040.2007.01757.x PubMedCrossRefGoogle Scholar
  50. Flexas J, Niinemets U, Gallé A et al (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59. doi: 10.1007/s11120-013-9844-z PubMedCrossRefGoogle Scholar
  51. Fotelli MN, Nahm M, Kalliopi R, Rennenberg H, Halyvopoulos G, Matzarakis A (2009) Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. For Ecol Manage 257:1157–1164. doi: 10.1016/j.foreco.2008.11.026 CrossRefGoogle Scholar
  52. Francey R, Farquhar G (1982) An explanation of 13C/12C variations in tree rings. Nature 297:28–31. doi: 10.1038/297028a0 CrossRefGoogle Scholar
  53. Früh T, Kurth W (1999) The hydraulic system of trees: theoretical framework and numerical simulation. J Theor Biol 201:251–270. doi: 10.1006/jtbi.1999.1028 PubMedCrossRefGoogle Scholar
  54. Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834. doi: 10.1139/x87-131 CrossRefGoogle Scholar
  55. Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759. doi: 10.1111/j.1469-8137.2010.03628.x PubMedCrossRefGoogle Scholar
  56. Galle A, Esper J, Feller U et al (2010) Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann For Sci 67:1–9. doi: 10.1051/forest/2010045 CrossRefGoogle Scholar
  57. Gebauer T, Horna V, Leuschner C (2008) Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol 28:1821–1830. doi: 10.1093/treephys/28.12.1821 PubMedCrossRefGoogle Scholar
  58. Gessler A, Schrempp S, Matzarakis A et al (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150:653–664. doi: 10.1046/j.1469-8137.2001.00136.x CrossRefGoogle Scholar
  59. Gessler A, Keitel C, Nahm M, Rennenberg H (2004a) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298. doi: 10.1055/s-2004-820878 PubMedCrossRefGoogle Scholar
  60. Gessler A, Rennenberg H, Keitel C (2004b) Stable isotope composition of organic compounds transported in the phloem of European beech—Evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biol 6:721–729. doi: 10.1055/s-2004-830350 PubMedCrossRefGoogle Scholar
  61. Gessler A, Jung K, Gasche R et al (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J For Res 124:95–111. doi: 10.1007/s10342-005-0055-9 CrossRefGoogle Scholar
  62. Gessler A, Ferrio JP, Hommel R et al (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:1–23. doi: 10.1093/treephys/tpu040 CrossRefGoogle Scholar
  63. Granier A, Reichstein M, Bréda N et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145. doi: 10.1016/j.agrformet.2006.12.004 CrossRefGoogle Scholar
  64. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849. doi: 10.1111/j.1365-3040.2005.01333.x CrossRefGoogle Scholar
  65. Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005) Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiol 25:349–360. doi: 10.1093/treephys/25.3.349 PubMedCrossRefGoogle Scholar
  66. Gruber A, Pirkebner D, Florian C, Oberhuber W (2012) No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. Plant Biol 14:142–148. doi: 10.1111/j.1438-8677.2011.00467.x PubMedCentralPubMedGoogle Scholar
  67. Grünhage L, Matyssek R, Häberle KH, Wieser G, Metzger U, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L, Raspe S (2012) Flux-based ozone risk assessment for adult beech forests. Trees 26:1713–1721. doi: 10.1007/s00468-012-0716-5 CrossRefGoogle Scholar
  68. Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183. doi: 10.1093/jxb/46.9.1177 CrossRefGoogle Scholar
  69. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115. doi: 10.1078/1433-8319-00017 CrossRefGoogle Scholar
  70. Han Q (2011) Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol 31:976–984. doi: 10.1093/treephys/tpr016 PubMedCrossRefGoogle Scholar
  71. Härdtle W, Niemeyer T, Assmann T et al (2013) Long-Term trends in tree-ring width and isotope signatures (δ 13C, δ15 N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems 16:1413–1428. doi: 10.1007/s10021-013-9692-x CrossRefGoogle Scholar
  72. Hartl-Meier C, Dittmar C, Zang C, Rothe A (2014) Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28:819–829. doi: 10.1007/s00468-014-0994-1 CrossRefGoogle Scholar
  73. Helle G, Schleser G (2004) Beyond CO2-fixation by Rubisco–an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380. doi: 10.1111/j.0016-8025.2003.01159.x CrossRefGoogle Scholar
  74. Hentschel R, Bittner S, Janott M et al (2013) Simulation of stand transpiration based on a xylem water flow model for individual trees. Agric For Meteorol 182–183:31–42. doi: 10.1016/j.agrformet.2013.08.002 CrossRefGoogle Scholar
  75. Hentschel R, Rosner S, Kayler ZE et al (2014) Norway spruce physiological and anatomical predisposition to dieback. For Ecol Manage 322:27–36. doi: 10.1016/j.foreco.2014.03.007 CrossRefGoogle Scholar
  76. Holst T, Hauser S, Kirchgässner A et al (2004a) Measuring and modelling plant area index in beech stands. Int J Biometeorol 48:192–201. doi: 10.1007/s00484-004-0201-y PubMedCrossRefGoogle Scholar
  77. Holst T, Mayer H, Schindler D (2004b) Microclimate within beech stands—part II: thermal conditions. Eur J For Res 123:13–28. doi: 10.1007/s10342-004-0019-5 CrossRefGoogle Scholar
  78. Holst J, Grote R, Offermann C et al (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36. doi: 10.1007/s00484-009-0248-x PubMedCrossRefGoogle Scholar
  79. Hommel R, Siegwolf R, Saurer M et al (2014) Drought response of mesophyll conductance in forest understory species—Impacts on water use efficiency and interactions with leaf water movement. Physiol Plant 152:98–114. doi: 10.1111/ppl.12160 PubMedCrossRefGoogle Scholar
  80. Jackson RB, Moore LA, Hoffman WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci 96:11387–11392. doi: 10.1073/pnas.96.20.11378 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Janott M, Gayler S, Gessler A et al (2010) A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant Soil 341:233–256. doi: 10.1007/s11104-010-0639-0 CrossRefGoogle Scholar
  82. Johnson DM, McCulloh KA, Meinzer FC et al (2011) Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Tree Physiol 31:659–668. doi: 10.1093/treephys/tpr050 PubMedCrossRefGoogle Scholar
  83. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x CrossRefGoogle Scholar
  84. Keel SG, Pepin S, Leuzinger S, Körner C (2006) Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees 21:151–159. doi: 10.1007/s00468-006-0106-y CrossRefGoogle Scholar
  85. Keitel C, Adams MA, Holst T et al (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ 26:1157–1168. doi: 10.1046/j.1365-3040.2003.01040.x CrossRefGoogle Scholar
  86. Köcher P, Gebauer T, Horna V, Leuschner C (2009) Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann For Sci 66:101–102. doi: 10.1051/forest/2008076 CrossRefGoogle Scholar
  87. Kolb KJ, Sperry JS (1999) Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ 22:925–935. doi: 10.1046/j.1365-3040.1999.00458.x CrossRefGoogle Scholar
  88. Korn S (2004) Experimentelle Untersuchung der Wasseraufnahme und der hydraulischen Eigenschaften des Wurzelsystems. Dissertation. University of GöttingenGoogle Scholar
  89. Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17. doi: 10.1046/j.1365-2745.2003.00742.x CrossRefGoogle Scholar
  90. Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234. doi: 10.1093/treephys/tpq055 PubMedCrossRefGoogle Scholar
  91. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401. doi: 10.1007/s00468-004-0397-9 CrossRefGoogle Scholar
  92. Lemoine D, Cochard H, Granier A (2002) Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): evidence for a stomatal control of xylem embolism. Ann For Sci 59:19–27. doi: 10.1051/forest:2001002 CrossRefGoogle Scholar
  93. Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355. doi: 10.1111/j.1365-3040.1995.tb00370.x CrossRefGoogle Scholar
  94. Leuschner C, Hertel D, Schmid I et al (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56. doi: 10.1023/B:PLSO.0000016508.20173.80 CrossRefGoogle Scholar
  95. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650. doi: 10.1093/treephys/25.6.641 PubMedCrossRefGoogle Scholar
  96. Libby L, Pandolfi L, Payton P et al (1976) Isotopic tree thermometers. Nature 261:184–288. doi: 10.1029/JC081i036p06377 CrossRefGoogle Scholar
  97. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259:698–709. doi: 10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  98. Löw M, Herbinger K, Nunn AJ et al (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548. doi: 10.1007/s00468-006-0069-z CrossRefGoogle Scholar
  99. Manzoni S, Vico G, Katul G et al (2011) Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 25:456–467. doi: 10.1111/j.1365-2435.2010.01822.x CrossRefGoogle Scholar
  100. Matyssek R, Le Thiec D, Löw M, Dizengremel P, Nunn AJ, Häberle KH (2006) Interactions between drought and O3 stress in forest trees. Plant Biology 8:11–17. doi: 10.1055/s-2005-873025 PubMedCrossRefGoogle Scholar
  101. Maxime C, Hendrik D (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25:265–276. doi: 10.1007/s00468-010-0503-0 CrossRefGoogle Scholar
  102. Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands—Part I : photosynthetically active radiation. Forstwissenschaftliches Cent 121:301–321. doi: 10.1046/j.1439-0337.2002.02038.x CrossRefGoogle Scholar
  103. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. doi: 10.1016/j.quascirev.2003.06.017 CrossRefGoogle Scholar
  104. McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. doi: 10.1104/pp.110.170704 PubMedCentralPubMedCrossRefGoogle Scholar
  105. McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi: 10.1111/j.1469-8137.2008.02436.x PubMedCrossRefGoogle Scholar
  106. McDowell NG, Beerling DJ, Breshears DD et al (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532. doi: 10.1016/j.tree.2011.06.003 PubMedCrossRefGoogle Scholar
  107. Meinen C, Leuschner C, Ryan NT, Hertel D (2009) No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23:941–950. doi: 10.1007/s00468-009-0336-x CrossRefGoogle Scholar
  108. Michelot A, Eglin T, Dufrêne E et al (2011) Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest. Plant Cell Environ 34:230–244. doi: 10.1111/j.1365-3040.2010.02238.x PubMedCrossRefGoogle Scholar
  109. Mitchell PJ, O’Grady AP, Tissue DT et al (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872. doi: 10.1111/nph.12064 PubMedCrossRefGoogle Scholar
  110. Nahm M, Radoglou K, Halyvopoulos G, Geßler A, Rennenberg H, Fotelli MN (2006) Physiological performance of beech (Fagus sylvatica L.) at its southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Plant Biology 8:52–63. doi: 10.1055/s-2005-872988 PubMedCrossRefGoogle Scholar
  111. Nahm M, Matzarakis A, Rennenberg H, Geßler A (2007) Seasonal courses of key parameters of nitrogen, carbon and water balance in European beech (Fagus sylvatica L.) grown on four different study sites along a European North-South climate gradient during the 2003 drought. Trees-Structure and Function 21:79–92. doi: 10.1007/s00468-006-0098-7 CrossRefGoogle Scholar
  112. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  113. Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639. doi: 10.1016/j.foreco.2010.07.054 CrossRefGoogle Scholar
  114. Oertli JJ (1993) Effect of cavitation on the status of water in plants. In: Borghetti M, Grace J, Raschi A (eds) Water Transport in Plants Under Climatic Stress. Cambridge University Press, Cambridge, pp 27–44CrossRefGoogle Scholar
  115. Offermann C, Ferrio JP, Holst J et al (2011) The long way down - are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol 31:1088–1102. doi: 10.1093/treephys/tpr093 PubMedCrossRefGoogle Scholar
  116. Palacio S, Hoch G, Sala A (2014) Does carbon storage limit tree growth? New Phytol 201:1096–1100. doi: 10.1111/nph.12602 PubMedCrossRefGoogle Scholar
  117. Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring δ 13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Chang Biol 14:1076–1088. doi: 10.1111/j.1365-2486.2008.01563.x CrossRefGoogle Scholar
  118. Phillips N, Oren R (1998) A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Ann des Sci For 55:217–235CrossRefGoogle Scholar
  119. Poschenrieder W, Grote R, Pretzsch H (2013) Extending a physiological forest growth model by an observation-based tree competition module improves spatial representation of diameter growth. Eur J For Res 132:943–958. doi: 10.1007/s10342-013-0730-1 CrossRefGoogle Scholar
  120. Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce ([L.] Karst.) and European beech ([L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369. doi: 10.1007/s00468-010-0510-1 CrossRefGoogle Scholar
  121. Priesack E (2006) Expert-N Dokumentation der Modellbibliothek. Forschungsverbund Agrarökosysteme München. FAM-Bericht 60. Hieronimus. MünchenGoogle Scholar
  122. Priesack E, Bauer C (2003) Expert-N Datenmanagement. Forschungsverbund Agrarökosysteme München. FAM-Bericht 59. Hieronimus. MünchenGoogle Scholar
  123. Priesack E, Gayler S, Hartmann H (2006) The impact of crop growth sub-model choice on simulated water and nitrogen balances. Nutr Cycl Agroecosystems 75:1–13. doi: 10.1007/s10705-006-9006-1 CrossRefGoogle Scholar
  124. Rais A, van de Kuilen J-W, Pretzsch H (2014) Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur J For Res 133:1043–1056. doi: 10.1007/s10342-014-0821-7 CrossRefGoogle Scholar
  125. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropff JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577. doi: 10.1051/forest:2006043 CrossRefGoogle Scholar
  126. Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121. doi: 10.2135/cropsci2002.0111 PubMedCrossRefGoogle Scholar
  127. Sala A (2009) Lack of direct evidence for the carbon-starvation hypothesis to explain drought-induced mortality in trees. Proc Natl Acad Sci USA 106:E68. doi: 10.1073/pnas.0904580106 PubMedCentralPubMedCrossRefGoogle Scholar
  128. Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:263–264. doi: 10.1111/j.1469-8137.2009.03167.x CrossRefGoogle Scholar
  129. Saurer M, Aellen K, Siegwolf R (1997) Correlating δ 13C and δ 18O in cellulose of trees. Plant Cell Environtvent 20:1543–1550. doi: 10.1046/j.1365-3040.1997.d01-53.x CrossRefGoogle Scholar
  130. Saurer M, Kress A, Leuenberger M et al (2012) Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J Geophys Res 117:2–12. doi: 10.1029/2011JD016861 Google Scholar
  131. Schäfer KVR, Oren R, Tenhunen JD (2000) The effect of tree height on crown level stomatal conductance. Plant Cell Environ 23:365–375. doi: 10.1046/j.1365-3040.2000.00553.x CrossRefGoogle Scholar
  132. Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357. doi: 10.1007/s004420000466 CrossRefGoogle Scholar
  133. Schulte PJ, Brooks JR (2003) Branch junctions and the flow of water through xylem in Douglas-fir and ponderosa pine stems. J Exp Bot 54:1597–1605. doi: 10.1093/jxb/erg169 PubMedCrossRefGoogle Scholar
  134. Schulze B, Wirth C, Linke P et al (2004) Laser ablation-combustion-GC-IRMS—a new method for online analysis of intra-annual variation of delta13C in tree rings. Tree Physiol 24:1193–1201. doi: 10.1093/treephys/24.11.1193 PubMedCrossRefGoogle Scholar
  135. Seibt U, Griffiths H, Berry J (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454. doi: 10.1007/s00442-007-0932-7 PubMedCrossRefGoogle Scholar
  136. Sevanto S, McDowell NG, Dickman LT et al (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161. doi: 10.1111/pce.12141 PubMedCentralPubMedCrossRefGoogle Scholar
  137. Skomarkova MV, Vaganov EA, Mund M et al (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586. doi: 10.1007/s00468-006-0072-4 CrossRefGoogle Scholar
  138. Solberg S, Hov Ø, Søvde A, Isaksen ISA, Coddeville P, De Backer H, Forster C, Orsolini Y, Uhse K (2008) European surface ozone in the extreme summer 2003. Journal of Geophysical Research: Atmospheres 113:D07307. doi: 10.1029/2007JD009098 CrossRefGoogle Scholar
  139. Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23. doi: 10.1016/S0168-1923(00)00144-1 CrossRefGoogle Scholar
  140. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263. doi: 10.1046/j.0016-8025.2001.00799.x PubMedCrossRefGoogle Scholar
  141. Sperry JS, Stiller V, Hacke UG (2003) Xylem hydraulics and the soil–plant–atmosphere continuum: opportunities and unresolved issues. Agron J 95:1362–1370. doi: 10.2134/agronj2003.1362 CrossRefGoogle Scholar
  142. Subramanian N, Karlsson PE, Bergh J, Nilsson U (2015) Impact of ozone on sequestration of carbon by Swedish Forests under a changing climate: a modeling study. Forest Sci 61:445–457. doi: 10.5849/forsci.14-026 CrossRefGoogle Scholar
  143. Thornley JHM (2002) Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis. Ann Bot 89:451–458. doi: 10.1093/aob/mcf071 PubMedCentralPubMedCrossRefGoogle Scholar
  144. Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell Environ 26:1097–1116. doi: 10.1046/j.1365-3040.2003.01035.x CrossRefGoogle Scholar
  145. Tyree M, Zimmermann M (2002) Xylem structure and the ascent of sap. Springer, BerlinCrossRefGoogle Scholar
  146. Tyree M, Davis S, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360CrossRefGoogle Scholar
  147. Urban O, Klem K, Holišová P et al (2014) Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. Environ Pollut 185:271–280. doi: 10.1016/j.envpol.2013.11.009 PubMedCrossRefGoogle Scholar
  148. Van der Maaten E, Bouriaud O, van der Maaten-Theunissen M et al (2013) Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley. Agric For Meteorol 181:85–93. doi: 10.1016/j.agrformet.2013.07.009 CrossRefGoogle Scholar
  149. Van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112. doi: 10.1016/j.dendro.2007.03.004 CrossRefGoogle Scholar
  150. Voltas J, Camarero JJ, Carulla D et al (2013) A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant Cell Environ 36:1435–1448. doi: 10.1111/pce.12072 PubMedCrossRefGoogle Scholar
  151. Weemstra M, Eilmann B, Sass-Klaassen UGW, Sterck FJ (2013) Summer droughts limit tree growth across 10 temperate species on a productive forest site. For Ecol Manage 306:142–149. doi: 10.1016/j.foreco.2013.06.007 CrossRefGoogle Scholar
  152. Werner C, Schnyder H, Cuntz M et al (2012) Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9:3083–3111. doi: 10.5194/bg-9-3083-2012 CrossRefGoogle Scholar
  153. Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644. doi: 10.1093/treephys/18.8-9.633 PubMedCrossRefGoogle Scholar
  154. Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289. doi: 10.1111/j.1469-8137.2012.04180.x PubMedCrossRefGoogle Scholar
  155. Wullschleger S (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/C i curves from 109 species. J Exp Bot 44:907–920. doi: 10.1093/jxb/44.5.907 CrossRefGoogle Scholar
  156. Xu H, Gossett N, Chen B (2007) Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans Graph 26:1–19. doi: 10.1145/1289603.1289610 Google Scholar
  157. Zeppel MJB, Anderegg WRL, Adams HD (2013) Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197:372–374. doi: 10.1111/nph.12090 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rainer Hentschel
    • 1
    • 2
  • Robert Hommel
    • 1
  • Werner Poschenrieder
    • 3
  • Rüdiger Grote
    • 4
  • Jutta Holst
    • 5
  • Christian Biernath
    • 2
  • Arthur Gessler
    • 1
    • 6
  • Eckart Priesack
    • 2
  1. 1.Institute for Landscape BiogeochemistryLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  2. 2.Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Chair of Forest Yield ScienceTechnische Universität MünchenFreisingGermany
  4. 4.Institute of Meteorology and Climate Research (IMK-IFU)Karlsruhe Institute of Technology (KIT)Garmisch-PatenkirchenGermany
  5. 5.Department of Physical Geography and Ecosystem Science, Institutionen för Naturgeografi och ekosystemvetenskap (INES)Lund UniversityLundSweden
  6. 6.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations