Skip to main content
Log in

Direct proembryogenic masses initiation and plant regeneration from immature Torreya grandis embryos

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This paper provides an important direct proembryogenic mass initiation and plant regeneration method that might be supportive and stable for gene transformation and commercial production of Torreya grandis.

Abstract

Torreya grandis is an important and commercially valuable tree that is utilized as a source of essential oil and nuts. Propagation researches of T. grandis have been focused on micropropagation and somatic embryogenesis which derived from callus but limited data regarding direct somatic embryogenesis and plant regeneration are available in the literature. This study investigated the effects of plant growth regulators combinations on direct proembryogenic masses initiation and plant regeneration. Proembryogenic masses were initiated from cotyledons and hypocotyls of immature zygotic embryos directly. The frequency of direct proembryogenic masses initiation (52.6 %) was significantly greater than other treatments when the explants were cultured on Schenk and Hildebrandt medium which supplemented with 0.1 mg l−1 N6-benzylaminopurine, 0.1 mg l−1 Kinetin and 0.1 mg l−1 2,4-dichlorophenoxyacetic acid. Combined application of Abscisic acid and Polyethylene glycol 6000 stimulated cotyledons formation and resulted in morphologically superior somatic embryos. Schenk and Hildebrandt medium supplemented with 10 mg l−1 Abscisic acid and 20 mg l−1 Polyethylene glycol 6000 was optimum (88 %) for somatic embryos maturation. Highest germinated somatic embryos percentage (35.6 %) was obtained on Schenk and Hildebrandt medium supplemented with 2000 mg l−1 activated charcoal, with root and shoot lengths of 2.3 and 1.9 cm, respectively. As proembryogenic masses were initiated without the formation of callus, this study will aid to establish stable genetic transformation and will also be useful in improving understanding of the somatic embryogenesis of T. grandis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

N6-benzylaminopurine

KT:

Kinetin

2,4-D :

2,4-dichlorophenoxyacetic acid

ABA:

Abscisic acid

PEG6000:

Polyethylene glycol 6000

SH medium:

Schenk and Hildebrandt medium

PGRs:

Plant growth regulator(s)

EDTA:

Ethylene diamine tetraacetic acid

SEs:

Somatic embryos

PEMs:

Proembryogenic masses

FAA:

Formalin–acetic acid–alcohol

References

  • Aboshama HMS (2011) Direct somatic embryogenesis of pepper (Capsicum annuum L.). world. J Agric Sci 7(6):755–762

    CAS  Google Scholar 

  • DeVerno LL, Park YS, Bonga JM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss]. Plant Cell Rep 18:948–953

    Article  CAS  Google Scholar 

  • Filonova LH, Bozhkov PV, Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51(343):249–264

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK (1988) Advances in biotechnology of conifers. Curr Sci 57(12):629–638

    Google Scholar 

  • Hay EI, Charest PJ (1999) Somatic embryo germination and desiccation tolerance in conifers. In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, pp 61–69

    Chapter  Google Scholar 

  • Husaini AM, Aquil S, Bhat M, Qadri T, Kamaluddin Abdin MZ (2008) A high-efficiency direct somatic embryogenesis system for strawberry (Fragaria × ananassa Duch.) cultivar Chandler. J Crop Sci Biotech 11(2):107–110

    Google Scholar 

  • Jiang XB, Chen LG, He XH (2004) Studies on the somatic embryogenesis of Torreya grandis. Acta Horticulturae Sinica 31(5):654–656

    Google Scholar 

  • Jin HB, Dai WS, Wu HM, Guo BX (2008) Study on tissue culture for axillary bud and softwood grafting technique of Torreya grandis cv. Merrillii. J Zhejiang For Sci Technol 28(3):56–58

    Google Scholar 

  • Kong L, Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Organ Cult 106:115–125

    Article  CAS  Google Scholar 

  • Lara-Chavez A, Flinn BS, Eqertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of oocarpa pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol 31(5):539–554

    Article  PubMed  Google Scholar 

  • Li XY, Huang FH, Murphy JB, Gbur EE (1998) Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus Taeda L.). In Vitro Cell Dev Biol Plant 34:22–26

    Article  CAS  Google Scholar 

  • Li ZJ, Cheng XJ, Dai WS, Jing BH, Wang AG (2004) History and status and development of Torreya grandis in Zhejiang Province. J Zhejiang For Coll 21(4):471–474 (in Chinese)

    CAS  Google Scholar 

  • Li ZJ, Cheng XJ, Dai WS, Zeng YR (2005) Origin of Torreya grandis ‘Merrillii’. J Zhejiang For Coll 22(4):443–448 (in Chinese)

    Google Scholar 

  • Lipavská HE, Konrádová HA (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. Vitro Cell Dev Biol Plant 40(1):23–30

    Article  Google Scholar 

  • Liu HL, Chen LG, Tong PZ, Wang H, Xiao JP, Tan JJ, Li DB (2007) In vitro organogenesis and plant regeneration from stem segments of Torreya grandis. J Fruit Sci 24(4):477–482

    CAS  Google Scholar 

  • Luthar Z, Bohanec B (1999) Induction of direct somatic organogenesis in onion (Allium cepa L.) using a two-step flower or ovary culture. Plant Cell Rep 18:797–802

    Article  CAS  Google Scholar 

  • Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration, and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334

    Article  CAS  Google Scholar 

  • Mulgund GS, Meti NT, Malabadi RB, Nataraja K, Kumar SV (2012) Role of salicyclic acid on conifer somatic embryogenesis. Res Biotechnol 3(2):57–61

    Google Scholar 

  • Ozyigit II, Kahramanz MV, Ecranz O (2007) Relationship between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr J Biotechnol 6:3–8

    CAS  Google Scholar 

  • Pareek A, Kothari SL (2003) Direct somatic embryogenesis and plant regeneration from leaf cultures of ornamental species of Dianthus. Sci Hortic 98(4):449–459

    Article  CAS  Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobes, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tiss Organ Cult. 86:87–101

    Article  Google Scholar 

  • Park S, Klimaszewska K, Park J, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 0:1–10

    Google Scholar 

  • Pullman GS, Bucalo K (2011) Pine somatic embryogenesis using zygotic embryos as explants. Methods Mol Biol 7(10):267–291

    Article  Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms: a developmental and experimental study. Cambridge University Press, Cambridge, pp 115–151

    Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68(5):1086–1090

    Article  Google Scholar 

  • Schenk T, Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shi H, Wang H, Wang M, Li X (2009) Antioxidant activity and chemical composition of Torreya grandis cv. Merrillii seed. Nat Prod Commun 4(11):1565–1570

    CAS  PubMed  Google Scholar 

  • Tang W, Ouyang F, Guo ZC (1998) Direct somatic embryogenesis and plantlet regeneration from mature zygotic embryos of loblolly pine. Pine 4(2):103–106

    Google Scholar 

  • Wang XY, Xiu LL (2005) Summarize on alimentation and function of Chinese Torreya nut. Food Res Exp 4:20–22 (in Chinese)

    Google Scholar 

  • Yao J, Huang JQ, Hu HK, Qin LY, Zhu MH, Zhang QX (2013) Somatic embryogenesis of Torreya grandis ‘Merrillii’. J Zhejiang A F Univ 30(1):129–135

    CAS  Google Scholar 

  • You XL, Han JY, Choi YE (2007) Plant regeneration via direct somatic embryogenesis in Panax japonicus. Plant Biotechnol Rep 1:5–9

    Article  Google Scholar 

  • Zhang CX, Li Q, Kong L (2007) Induction, development and maturation of somatic embryos in Bunge’s pine (Pinus bungeana Zucc. Ex Endl.). Plant Cell Tiss Organ Cult 91:273–280

    Article  Google Scholar 

  • Zhang QX, Hu HK, Lin HY, Huang YJ, Yuan J, Xv HW, Han KY, Huang LC, Huang JQ (2011) Somatic embryogenesis and plant regeneration from immature hickory (Carya cathayensis Sarg.) embryos. Prop Ornament Plants 11(3):137–143

    CAS  Google Scholar 

  • Zhang QX, Hu HK, Huang YJ, Han KY, Xv HW, Shen YQ, Li SF, Huang JQ (2012a) The relationship between developmental stages of zygotic embryos at explanting and embryogenic frequency on hickory (Carya cathayensis Sarg.). Sci Hortic 139:66–70

    Article  Google Scholar 

  • Zhang QX, Sun Y, Hu HK, Chen B, Hong CT, Guo HP, Pan YH, Zheng BS (2012b) Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis. Vitro Cell Dev Biol Plant 48(1):50–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Major Agricultural Science and Technology Project of Science Technology Department of Zhejiang Province (2012C12002), National Natural Science Foundation of China (31470682, 31100461), National High Technology Research and Development program of China (863 Program, 2013AA102605), Key Agricultural Science and Technology Project of New Varieties Breeding of Zhejiang Province (2012C12904-12), and Spark Key Program of Ministry of Science and Technology of China (2012GA700001) for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqin Huang.

Additional information

Communicated by J. Lin.

Q. Zhang and W. Xiang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xiang, W., Yao, J. et al. Direct proembryogenic masses initiation and plant regeneration from immature Torreya grandis embryos. Trees 29, 1605–1612 (2015). https://doi.org/10.1007/s00468-015-1243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1243-y

Keywords

Navigation