Advertisement

Trees

, Volume 29, Issue 5, pp 1365–1380 | Cite as

The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches

  • Gustavo Malagi
  • Marcos Robson Sachet
  • Idemir Citadin
  • Flávio Gilberto Herter
  • Marc Bonhomme
  • Jean-Luc Regnard
  • Jean Michel Legave
Original Paper

Abstract

Key message

This study is an important contribution to understanding of the dormancy dynamics of apple buds grown in contrasting climates, highlighting the main factors possibly involved in their control and the key role of rehydration.

Abstract

The aim of this study was to compare the dormancy dynamics and the physiological status of vegetative and floral buds of apple cultivars grown during cold and mild winters. Long shoots bearing vegetative buds and short shoots bearing floral buds were regularly collected during two successive cycles at Marsillargues, France (2011/12, 2012/13) and Palmas, Paraná, Brazil (2012, 2013). The dormant state in vegetative buds was evaluated by the single-node cutting test and in floral buds by the Tabuenca’s test. The first approach highlighted important differences in the dormancy dynamics in both sites, clearly showing that: (1) the entry and the maximum level of dormancy are strongly correlated with cold winter temperatures; (2) the three classical phases of dormancy dynamics are difficult to differentiate under a mild winter climate; and (3) endodormancy, if it actually exists, is very weak and lasts only for a short time. Distinct temporal changes between both sites were found for flower primordia fresh and dry weight. The ecodormant state was linked to significant changes in dry weight and the capacity to quickly reach a water content of around 77 % according to the Tabuenca’s test. High temperatures in Brazil allowed a quick transition between endodormancy and ecodormancy compared to France where the rehydration period was long. The weak endodormancy associated with a quasi-absence of ecodormancy could explain the strong spatio-temporal heterogeneity of budburst and flowering under a mild winter climate. This may be useful for understanding the future phenology of trees under global warming conditions and for the selection of adapted cultivars.

Keywords

Vegetative buds Endodormancy Ecodormancy Floral primordia Dormancy release Water content 

Notes

Acknowledgments

The authors are grateful to Xavier Crété in France (Centre Expérimental Horticole de Marsillargues) and Geraldo Lovo in Brazil (Maçãs Lovo) for proposing plants to study. In the same way, we thank Leonardo Silva Patto, Céline Bastin and Adnane El Yaacoubi for their contribution to this study. Thanks are also due to the “Comité Français d’Évaluation de la Coopération Universitaire et Scientifique avec le Brésil” (COFECUB-France) and to the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES-Brazil) for their financial support. We also thank Pierre-Eric Lauri for having reviewed the article and suggested improvements, and Gail Wagman for editing the English. This study was funded by CAPES/COFECUB cooperation program (Brazil/France) (project number 686/10–2010/2013).

Conflict of interest

The corresponding author has received international scholarship from CAPES/COFECUB cooperation program to conduct part of their studies in France between 2011 and 2012.

References

  1. Abbott DL (1970) The role of bud scales in the morphogenesis and dormancy of the apple fruit bud. In: Luckwill LC (eds) Physiology of tree crops. 2nd Symposium, University of Bristol, pp 65–82Google Scholar
  2. Aguilera F, Ruiz L, Fornaciari M, Romano B, Galán C, Oteros J, Dhiab AB, Msallem M, Orlandi F (2014) Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometeorol 58:867–876CrossRefPubMedGoogle Scholar
  3. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204CrossRefGoogle Scholar
  4. Andreini L, Cortázar-atauri IG, Chuine I, Viti R, Audergon J, Bertuzzi P (2014) Understanding dormancy release in apricot flower buds (Prunus armeniaca L.) using several process-based phenological models. Agric For Meteorol 184:210–219. doi: 10.1016/j.agrformet.2013.10.005 CrossRefGoogle Scholar
  5. Balandier P (1992) Étude dynamique de la croissance et du développement des bourgeons de quelques cultivars de pêcher cultivés à diverses altitudes sous le climat tropical de l’île de la Réunion. Thesis, Université Blaise Pascal, Clermont-Ferrand (FRA)Google Scholar
  6. Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Change 87:153–166. doi: 10.1007/s10584-007-9367-8 CrossRefGoogle Scholar
  7. Bartolini S, Giorgelli F (1994) Observations on development of vascular connections in two apricot cultivars. Adv Hortic Sci 8:97–100Google Scholar
  8. Bartolini S, Viti R, Laghezali M, Olmez HA (2006) Xylem vessel differentiation and microsporogenesis evolution in ‘Canino’ cultivar growing in three different climatic areas: Italy, Morocco and Turkey. Acta Hortic 701:135–140Google Scholar
  9. Bonhomme M, Rageau R, Richard JP, Gendraud M (1997) Dormancy of peach floral buds: biological and tentative biochemical approaches. Acta Hortic 441:167–174Google Scholar
  10. Bonhomme M, Rageau R, Gendraud M (2000a) ATP, ADP and NTP contents in vegetative and floral peach buds during winter: are they useful for characterizing the type of dormancy. In: Crabbe J (ed) Dormancy in plants from whole plant behaviour to cellular control. CABI Publishing, Clermont-Ferrand, pp 245–257CrossRefGoogle Scholar
  11. Bonhomme M, Rageau R, Gendraud M (2000b) Influence of temperature on the dynamics of ATP, ADP and non-adenylic tri-phosphate nucleotides (NTP) in vegetative and floral peach buds during dormancy. Tree Phys 20:615–621. doi: 10.1093/treephys/20.9.615 CrossRefGoogle Scholar
  12. Bonhomme M, Rageau R, Lacointe A, Gendraud M (2005) Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci Hortic 105:223–240. doi: 10.1016/j.scienta.2005.01.015 CrossRefGoogle Scholar
  13. Campoy JA, Ruiz D, Egea J (2011) Seasonal progression of bud dormancy in apricot (Prunus armeniaca L.) in a Mediterranean climate: a single-node cutting approach. Plant Biosyst 145:596–605. doi: 10.1080/11263504.2011.559361 CrossRefGoogle Scholar
  14. Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm climates: an approach in Murcia (Spain) and the Western Cape (South Africa). Eur J Agron 37:43–55. doi: 10.1016/j.eja.2011.10.004 CrossRefGoogle Scholar
  15. Carvalho RIN, Zanette F (2004) Dormancy dynamics of ‘Imperial Gala’ apple tree buds during autumn and winter in a region of low chill occurrence. Rev Bras Frutic 26:65–68. doi: 10.1590/S0100-29452004000100018 CrossRefGoogle Scholar
  16. Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392. doi: 10.1111/j.1469-8137.2011.03823.x CrossRefPubMedGoogle Scholar
  17. Champagnat P (1989) Rest and activity in vegetative buds of trees. In: Dreyer E, Aussenac G, Bonnet-Masimbert M, Dizengremel P, Favre JM, Garrec JP, Le tacon F, Martin F (eds) Forest tree physiology. An Scien For, pp 9–26Google Scholar
  18. Chmielewski FM, Rotzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–111. doi: 10.1016/S0168-1923(01)00233-7 CrossRefGoogle Scholar
  19. Cook NC, Jacobs G (2000) Progression of apple (Malus x domestica Borkh.) bud dormancy in two mild winter climates. J Hort Sci Biotechnol 75:233–236Google Scholar
  20. Cottignies A (1990) Potentiel osmotic et potentiel hydrique du bourgeon terminal de frêne, au cours du cycle annuel. C R Acad Sci 310:211–216Google Scholar
  21. Crabbé J, Barnola P (1996) A new conceptual approach to bud dormancy in woody plants. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, pp 83–113Google Scholar
  22. Cronjé PJR, Jacobs G, Sadie A, Cook NC (2003) Quantification of the dormancy progression in terminal apple buds. Changes in growth rate and water status. Adv Hort Sci 17:105–110Google Scholar
  23. de Carvalho RIN, Biasi LA, Zanette F, Rendoke JC, Santos JM, Pereira GP (2010) Endodormancy of peach and plum tree buds in a region of low chill occurrence. Rev Bras Frutic 32:769–777. doi: 10.1590/S0100-29452010000300016 CrossRefGoogle Scholar
  24. Dennis FG (2003) Standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38:333–350Google Scholar
  25. Erez A, Faust M, Line MJ (1998) Changes in water status in peach buds on induction, development and release from dormancy. Sci Hortic 73:111–123. doi: 10.1016/S0304-4238(97)00155-6 CrossRefGoogle Scholar
  26. Essiamah S, Eschrich W (1986) Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation. IAWA Bul 7:31–38CrossRefGoogle Scholar
  27. Faust M, Liu D, Millard MM (1991) Bound versus free water in dormant apple buds—a theory for endodormancy. HortScience 26:887–890Google Scholar
  28. Faust M, Liu D, Line MJ, Stutte GW (1995) Conversion of bound to free water in endodormant buds of apple is an incremental process. Acta Hortic 395:113–118Google Scholar
  29. Fennell A (1999) Systems and approaches to studying dormancy systems and approaches to studying dormancy. Am Soc Hortic Sci 34:1171–1191Google Scholar
  30. Fu YSH, Campiolia M, Vitassec Y, de Boecka HJ, Van den Bergea J, AbdElgawadd H, Asardd H, Piaob S, Deckmyna G, Janssensa IA (2014) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. PNAS 111:7355–7360. doi: 10.1073/pnas.1321727111 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Gamalei YV (1985) Plasmodesmata: intercellular communication in plants. Sov Plant Physiol 32:134–148Google Scholar
  32. Gleizer B, Legave JM, Berthoumieu JF, Mathieu V (2007) Les arboriculteurs face aux changements climatiques—évolution de la phénologie florale et du risque de gel printanier. Infos Ctifl 235:37–40Google Scholar
  33. Guédon Y, Legave JM (2008) Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecol Model 219:189–199CrossRefGoogle Scholar
  34. Hauagge R, Cummins JN (1991) Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. J Am Soc Hort Sci 116:100–106Google Scholar
  35. Hauagge R, Tsuneta M (1999) ‘Iapar 75—Eva’ ‘IAPAR 76—Anabela’ e ‘IAPAR 77—Carícia’—Novas cultivares de macieira com baixa necessidade em frio. Rev Bras Frutic 21:239–242Google Scholar
  36. Hawerroth FJ, Herter FG, Petri JL, Leite GB, Pereira JFM (2010) Dormência em frutíferas de clima temperado. Embrapa Clima Temperado. Documentos 310:1–57Google Scholar
  37. Herter FG, Rageau R, Bonhomme M, Mauget JC (1992) Determinação do término da dormência e floração para algumas cultivares de macieira: comparação entre métodos biológicos e empíricos. Rev Bras Frutic 14:77–81Google Scholar
  38. Hesterberg T, Monaghan S, Moore DS, Clipson A, Epstein R (2003) Bootstrap methods and permutation tests. W H Freeman and Company, p 8Google Scholar
  39. Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540CrossRefPubMedGoogle Scholar
  40. Hruy G, Tegenbos J, Petre R, Deckers T, Teklebirhan Y, Bauer H, Gebrehiwot K, Raes D, Deckers J, Keulemans J (2013) Studies on mode of expression of apple (Malus × domestica Borkh.) bud dormancy under tropical and temperate climatic conditions. J Agric Sci Technol B3:503–516Google Scholar
  41. Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167. doi: 10.1007/s11103-010-9608-5 CrossRefPubMedGoogle Scholar
  42. Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, Para-, and Ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377Google Scholar
  43. Lauri PE, Bourdel G, Trottier C, Cochard H (2008) Apple shoot architecture—evidence for strong variability of bud size and composition and hydraulics within a branching zone. New Phytol 178:798–807. doi: 10.1111/j.1469-8137.2008.02416.x CrossRefPubMedGoogle Scholar
  44. Legave JM, Garcia G, Marco F (1982) Some descriptive aspects of drops process of flower buds, or young flowers observed on apricot tree in south of France. Acta Hortic 121:75–83Google Scholar
  45. Legave JM, Farrera I, Almeras T, Calleja M (2008) Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J Hortic Sci Biotec 83:76–84Google Scholar
  46. Legave JM, Baculat B, Brisson N (2010) Assessment of chilling requirements of apricot floral buds: comparison of three contrasting chilling models under mediterranean condition. In: 8th IS on temperate zone fruits, vol 1. pp 41–50Google Scholar
  47. Legave JM, Blanke M, Christen D, Giovannini D, Mathieu V, Oger R (2013) A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int J Biometeorol 57:317–331. doi: 10.1007/s00484-012-0551-9 CrossRefPubMedGoogle Scholar
  48. Leite GB, Bonhomme M, Putti GL, Petri JL, Rageau R (2006) Physiological and biochemical evolution of peach leaf buds during dormancy course under two contrasted temperature patterns. Int J Hortic Sci 12:15–19Google Scholar
  49. Liew J (2013) Dormancy in reproductive vegetative buds in creeping perennials dominating the agricultural weed flora in Scandinavia. Thesis, Acta Universitatis Agriculturae SueciaeGoogle Scholar
  50. Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:1–13. doi: 10.1371/journal.pone.0020155 CrossRefGoogle Scholar
  51. Marafon AC, Citadin I, Amarante L, Herter FG, Hawerroth FJ (2011) Chilling privation during dormancy period and carbohydrate mobilization in Japanese pear trees. Sci Agric 68:462–468CrossRefGoogle Scholar
  52. Mauget JC, Germain E (1980) Dormance et précocité de débourrement des bourgeons chez quelques cultivars de Noyer (Juglans regia L.). C R Acad Agric Fr 290:135–138Google Scholar
  53. Mauget JC, Rageau R (1988) Bud dormancy and adaptation of apple tree to mild winter climates. Acta Hortic 232:101–108Google Scholar
  54. Meier U (1997) BBCH-Monograph. Growth stages of plants—Entwicklungs stadien von Pflanzen—Estadios de las plantas—Développement des PlantesGoogle Scholar
  55. Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94:1470–1478. doi: 10.3732/ajb.94.9.1470 CrossRefPubMedGoogle Scholar
  56. Mohamed AK (2008) The effect of chilling, defoliation and hydrogen cyanamide on dormancy release, bud break and fruiting of Anna apple cultivar. Sci Hortic 118:25–32. doi: 10.1016/j.scienta.2008.05.015 CrossRefGoogle Scholar
  57. Mohamed HB, Vadel AM, Khemira H (2010) Estimation of chilling requirement and effect of hydrogen cyanamide on budbreak and fruit characteristics of ‘superior seedless’ table grape cultivated in a mild winter climate. Pak J Bot 42:1761–1770Google Scholar
  58. Monet R, Bastard Y (1971) Effets d’une température modérement élevée: 25 °C sur les bourgeons floraux de pêcher. Ann Amélior Plantes 27:717–728Google Scholar
  59. Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828. doi: 10.1139/g09-050 CrossRefPubMedGoogle Scholar
  60. Oukabli A, Mahhou A (2007) Dormancy in sweet cherry (Prunus avium L.) under Mediterranean climatic conditions. Biotechnol Agron Soc Environ 11:133–139Google Scholar
  61. Parmentier CM, Rowland LJ, Line MJ (1998) Water status in relation to maintenance and release from dormancy in blueberry flower buds. J Am Soc Hort Sci 123:762–769Google Scholar
  62. Petri JL, Leite GB (2004) Consequences of insufficient winter chilling on apple tree bud-break. In: VIIth on TZFTS, vol 1. Acta Hort, pp 53–60Google Scholar
  63. Pouget R (1963) Recherches physiologiques sur le repos végétatif de la vigne (Vitis vinifera L.): la dormance des bourgeons des bourgeons et le mécanisme de sa disparition. Ann Amél Pl 13:1–247Google Scholar
  64. Prat C (1990) Apple trees: morphology and anatomy. In: Janick J (ed) Hortic Rev 12. pp 265–305Google Scholar
  65. Putti GL, Petri JL, Mendez ME (2003) Temperaturas efetivas para a dormência da macieira (Malus domestica Borkh). Rev Bras Frutic 25:210–212. doi: 10.1590/S0100-29452003000200006 CrossRefGoogle Scholar
  66. Rageau R (1982) Étude expérimentale des lois d’action de la température sur la croissance des bourgeons floraux du pêcher (Prunus persica L. Batsch) pendant la post-dormance. C R Acad Agric Fr 68:709–718Google Scholar
  67. Rinne PLH, Van der Schoot C (2004) Cell-cell communication as a key factor in dormancy cycling. J Crop Improv 10:113–156. doi: 10.1300/J411v10n01_07 CrossRefGoogle Scholar
  68. Rinne PLH, Kaikuranta PM, Van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264CrossRefPubMedGoogle Scholar
  69. Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, Van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146. doi: 10.1105/tpc.110.081307 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Rowland LJ, Liu D, Millard MM, Line MJ (1992) Magnetic resonance imaging of water in flower buds of blueberry. HortScience 27:339–341Google Scholar
  71. Saure MC (1985) Dormancy release in deciduous fruit trees. Am Soc Hortic Sci 7:239–300Google Scholar
  72. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300 CrossRefPubMedGoogle Scholar
  73. Sugiura T, Yoshida M, Magoshi J, Ono S (1995) Changes in water status of peach flower buds during endodormancy and ecodormancy measured by differential scanning calorimetry and nuclear magnetic resonance spectroscopy. J Am Soc Hortic Sci 120:134–138Google Scholar
  74. Tabuenca MC (1964) Necesidades de frio invernal de variedades de albaricoquero, melocotonero y peral. An Aula Dei 7:113–132Google Scholar
  75. Tabuenca MC (1967) Necesidades de frio invernal de variedades de ciruelo. An Aula Dei 8:383–391Google Scholar
  76. Van der Schoot C, Rinne PLH (1999) Networks for shoot design. Trends Plant Sci 4:31–37. doi: 10.1016/S1360-1385(98)01362-4 CrossRefPubMedGoogle Scholar
  77. Van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131. doi: 10.1016/j.plantsci.2010.08.009 CrossRefPubMedGoogle Scholar
  78. Viti R, Andreini L, Ruiz D, Egea J, Bartolini S, Iacona C, Campoy JA (2010) Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci Hortic 124:217–224. doi: 10.1016/j.scienta.2010.01.001 CrossRefGoogle Scholar
  79. Yamamoto RR, Katsumi-Horigane A, Yoshida M, Sekozawa Y, Sugaya S, Gemma H (2010) “Floral primordia necrosis” incidence in mixed buds of Japanese pear (Pyrus pyrifolia (Burm.) Nakai var. culta) ‘Housui’ grown under mild winter conditions and the possible relation with water dynamics. J Japan Soc Hort Sci 79:246–257. doi: 10.2503/jjshs1.79.246 CrossRefGoogle Scholar
  80. Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box Gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133:708–716Google Scholar
  81. Yooyongwech S, Horigane A, Yoshida M, Yamaguchi M, Sekozawa Y, Sugaya S, Gemma H (2008) Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiol Plant 134:522–533. doi: 10.1111/j.1399-3054.2008.01143.x CrossRefPubMedGoogle Scholar
  82. Zguigal A, Chahbar A, Loudiyi DMW, Crabbé J (2006) Caractéristiques de la dormance des bourgeons du pommier dans les régions à hivers doux. Biotechnol Agron Soc Environ 10:131–137Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gustavo Malagi
    • 1
  • Marcos Robson Sachet
    • 2
  • Idemir Citadin
    • 2
  • Flávio Gilberto Herter
    • 1
  • Marc Bonhomme
    • 3
    • 4
  • Jean-Luc Regnard
    • 5
  • Jean Michel Legave
    • 5
  1. 1.Federal University of Pelotas, Campus Universitário, s/nCapão do LeãoBrazil
  2. 2.Federal Technological University of ParanáPato BrancoBrazil
  3. 3.INRA-UMR 547 PIAFClermont-FerrandFrance
  4. 4.Clermont Université, University Blaise Pascal, UMR 547 PIAFClermont-FerrandFrance
  5. 5.INRA-UMR 1334 AGAPMontpellierFrance

Personalised recommendations