Skip to main content
Log in

Identification of microRNAs associated with male flower bud development of Populus simonii × Populus nigra

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This paper for the first time provides insights into the important roles of the miRNAs during blooming period in Populus simonii × P. nigra.

Abstract

MicroRNAs (miRNAs) are small RNAs that act as regulators of eukaryotic gene expression at the post-transcriptional level. Using high-throughput sequencing technology, we analyzed miRNAs in Populus. simonii × P. nigra at three stages of male flower bud development (pollen at the tetrad, uninucleate, and binucleate stages, respectively), using shoot tips and vegetative buds as controls. In total, 305 differentially expressed miRNAs from 49 families were identified. Among the 49 families, 17 were highly or moderately conserved in other species. A higher number of differentially expressed miRNAs were down-regulated in male flower buds compared with vegetative organs. Quantitative real-time PCR showed that almost all miRNAs have the same expression pattern as in the cluster results. Gene ontology enrichment analysis provided an indication of the possible functions of the miRNAs in male flower bud development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen E (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Boes TK, Strauss SH (1994) Floral phenology and morphology of black cotton wood, Populus trichocarpa (Salicaceae). Am J Bot 81(5):562–567

    Article  Google Scholar 

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60(5):1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Bradley D (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, LopesT Gardner R, Berger F, Feijo JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9:87

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26):5923–5931

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39(4):544–549

    Article  CAS  PubMed  Google Scholar 

  • Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Gene Dev 25(18):1881–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Lima JC, Loss-Morais G, Margis R (2012) MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet Mol Biol 35(4 suppl):1069–1077

    Article  PubMed Central  PubMed  Google Scholar 

  • Grant-Downton R, Hafidh S, Twell D, Dickinson HG (2009a) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2(3):500–512

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Trionnaire GL, Schmid R, Rodriguez-Enriquez J, Said Hafidh SM, Twell D, Dickinson H (2009b) MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genom 10:643

    Article  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    PubMed Central  CAS  PubMed  Google Scholar 

  • He H, Yang TY, Wu WY, Zheng BL (2015) Small RNAs in pollen. Sci China Life Sci 58(3):1–7

    Article  Google Scholar 

  • Henderson IR, Zhang XY, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38(6):721–725

    Article  CAS  PubMed  Google Scholar 

  • Hoenicka H, Fladung M (2006) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Article  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132(2):640–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21URNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim J, Jung J, Reyes JL, Kim Y, Kim S, Chung K, Kim JA, Lee M, Lee Y, Narry Kim V et al (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42(1):84–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence micro-RNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Li QZ, Li XG, Bai SN, Lu WL, Zhang XS (2001) Isolation and expression of HAP2, a homolog of AP2 in Hyacinthus orientalis L. Dev Reprod Biol 10:69–75

    CAS  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111(5):791–799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu SP, Li D, Li QB, Zhao P, Xiang ZH, Xia QY (2010) MicroRNAs of Bombxy identified by Solexa sequencing. BMC Genom 11:148

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17(8):2186–2203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu ZX, Wang YH, Peng YH, Korpelainen H, Li CY (2006) Genetic diversity of Populus cathayana Rehd populations in southwestern China revealed by ISSR markers. Plant Sci 170(2):407–412

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55(1):131–151

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj M (1952) Floral morphology of Populus deltoides and P. tremuloides contributions from the hull botanical laboratory 639. Bot Gaz 114(2):222–243

    Article  Google Scholar 

  • Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, Desilva U, Zhang WX, Sunkar R (2009) Cloning, characterization and expression analysis of porcine microRNAs. BMC Genom 10:65

    Article  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4):519–525

    Article  CAS  PubMed  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134(6):1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Siré C, Moreno AB, Garcia-Chapa M, López-Moya JJ, Segundo BS (2009) Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett 583(6):1039–1044

    Article  PubMed  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136(3):461–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19(3):175–182

    Article  CAS  PubMed  Google Scholar 

  • Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z (2006) Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J 47(1):140–151

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(9):4477–4482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12(6):R53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18):3539–3547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2014) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65(1):89–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

CL conceived and designed the experiments. ZW, QL and TZ performed the experiments. ZW analyzed the data and wrote the paper. CL and JY revised the paper. All authors read and approved the final version of manuscript.

Acknowledgements

This research was supported by the National High Technology Research and Development Program of China (2013AA102704), the Fundamental Research Funds for the Central Universities (DL11EA02) and Fundamental Research Funds for the Central Universities (2572014AA34).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghao Li.

Additional information

Communicated by J. Carlson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Q., Xu, X. et al. Identification of microRNAs associated with male flower bud development of Populus simonii × Populus nigra . Trees 29, 1329–1339 (2015). https://doi.org/10.1007/s00468-015-1211-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1211-6

Keywords

Navigation