, Volume 29, Issue 3, pp 903–916 | Cite as

Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands

  • Sergio PirainoEmail author
  • Elena María Abraham
  • Angela Diblasi
  • Fidel Alejandro Roig Juñent
Original Paper
Part of the following topical collections:
  1. Tree Rings


Key message

Across the Central Monte Desert district in Argentina, landform and soil variability drive radial growth of Prosopis flexuosa and its relation with precipitation.


Desert forests grow under diverse ecological conditions, mainly resulting from the spatial heterogeneity of drylands with consequences on tree growth and its interactions with climate. In the Monte Desert, geomorphological processes generate landform and soil variability, determining the distribution and growth of plant species. Prosopis flexuosa DC., a dominant tree species in the Central Monte Desert, grows in territories characterized by a high variability of landform and soil. We applied classical dendrochronological and statistical analysis to disentangle the effect of spatial heterogeneity upon the species radial growth and its further relation with precipitation fluctuations. Trees from 11 plots distributed in seven P. flexuosa forests encompassing the most important geomorphological/landform units in the Central Monte Desert were analyzed. Tree-ring development at both high and low frequencies reflects spatial landform variability. Soil heterogeneity drives ring growth within landform. Regionally, precipitation influences radial growth at the beginning and the end of the growing season, while locally dependent mechanisms related to landform/soil variability emerged. In this sense, the negative influence of late-summer precipitation found for a riparian chronology is a function of soil permeability. Ring growth at the paleo-river environment depends on late spring and early mid-summer precipitation, with within-landform differences probably related to soil heterogeneity. In the case of inter-dune and lowland units, radial growth depends on early spring rainfall. Our findings highlight the influence of the heterogeneity of desert environments on tree growth. The information is relevant to management and conservation policies, particularly for the forests of P. flexuosa in Argentine Monte.


Algarrobo dulce Dendroclimatology Ecological gradient Semi-arid woodland Tree-ring variability 


Author contribution statement

Sergio Piraino designed the study, performed field work and statistical analysis and wrote the paper. Elena María Abraham contributed to design the study. Lita Diblasi contributed to perform the statistical analysis. Fidel Alejandro Roig-Juñent contributed to design the study and writing the manuscript.


The first author thanks CONICET for a PhD fellowship. The authors warmly thank the Aguero, Cordoba and Molina families for allowing sampling in their respective areas. Special thanks are due to Eduardo “Quique” Barrios, Hugo Debandi, Alberto Ripalta and Gualberto Zalazar for their field assistance. We thank the Dirección de Recursos Naturales Renovables of Mendoza province for allowing sampling. We would like to express our gratitude to the Communicating Editor and the anonymous reviewers for the detailed revision and constructive comments that greatly improved our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abraham E (2000) Geomorfología de la Provincia de Mendoza, In: Abraham E and Martínez FM (Eds). Recursos y Problemas Ambientales de las Zonas Áridas. Primera Parte: Provincias de Mendoza, San Juan y La Rioja. TOMO I: Caracterización Ambiental. GTZ, IDR (Univ. Granada), IADIZA, SDSyPA. Argentina: 29–48Google Scholar
  2. Abraham EM, Prieto R (1991) Aportes de la geografía histórica para el estudio de los procesos de cambios en los paisajes. El caso de Guanacache. Mendoza. Argentina. Bamberger Geographische Schriften Bd. Bamberg 11: 309–336Google Scholar
  3. Abraham E, del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R (2009) Overview of the geography of the Monte Desert biome (Argentina). J Arid Environ 73(2):144–153CrossRefGoogle Scholar
  4. Aguiar M, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14(7):273–277CrossRefPubMedGoogle Scholar
  5. Alvarez JA, Villagra PE (2009) Prosopis flexuosa DC. (Fabaceae, Mimosoideae). Kurtziana 35(1):47–61Google Scholar
  6. Ansley RJ, Boutton TW, Jacoby PW (2007) Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations. Proceedings: Shrubland dynamics-fire and water. USDA Forest Service RMRS-P-47, Fort Collins, 96–103Google Scholar
  7. Bagnouls F, Gaussen H (1953) Saison sèche et indice xérothermique. Bull Soc Hist Nat de Toulouse 88:193–240Google Scholar
  8. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30(3):303–311CrossRefGoogle Scholar
  9. Bisigato AJ, Villagra PE, Ares JO, Rossi BE (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73(2):182–191CrossRefGoogle Scholar
  10. Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15Google Scholar
  11. Boulanger JP, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: temperature mean state and seasonal cycle in South America. Clim Dyn 27(2–3):233–259CrossRefGoogle Scholar
  12. Brunke M, Gonser TOM (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37(1):1–33CrossRefGoogle Scholar
  13. Bunn AG, Waggoner LA, Graumlich LJ (2005) Topographic mediation of growth in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecol Biogeogr 14:103–114CrossRefGoogle Scholar
  14. Bunn AG, Hughes MK, Salzer MW (2011) Topographically modified tree-ring chronologies as a potential means to improve paleoclimate inference. A letter. Clim Change 105:627–634CrossRefGoogle Scholar
  15. Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arboretum 57:450–455Google Scholar
  16. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Fascículo 1. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería, Buenos Aires, vol. 2, p 85Google Scholar
  17. Callaway RM (1998) Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos 82(3):561–573CrossRefGoogle Scholar
  18. Chapin FS III, Matson PA (2011) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  19. Cook ER (1985) A time series analysis approach to tree ring standardization. PhD Thesis, Lamont-Doherty Geological Observatory, New YorkGoogle Scholar
  20. Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree-Ring Bull 47:37–59Google Scholar
  21. Cook ER, Krusic PJ (2006) ARSTAN 41: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New YorkGoogle Scholar
  22. Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76(4):562–566CrossRefGoogle Scholar
  23. Ferrero ME, Villalba R, De Membiela M, Ripalta A, Delgado S, Paolini L (2013) Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecol 214(11):1321–1334CrossRefGoogle Scholar
  24. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  25. Fritts HC, Smith DG, Cardis JW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46(4):394–401CrossRefGoogle Scholar
  26. Giantomasi MA (2011) Crecimiento de Prosopis flexuosa DC en relación a un gradiente de déficit hídrico en la zona Árida-Semiárida del centro de Argentina. PhD Dissertation. Universidad Nacional de Cuyo, Mendoza, Argentina, p 141Google Scholar
  27. Giantomasi MA, Roig-Juñent F, Patón-Domínguez D, Massaccesi G (2012) Environmental modulation of the seasonal cambial activity in Prosopis flexuosa DC trees from the Monte woodlands of Argentina. J Arid Environ 76:17–22CrossRefGoogle Scholar
  28. Giantomasi MA, Roig-Juñent FA, Villagra PE (2013) Use of differential water sources by Prosopis flexuosa DC: a dendroecological study. Plant Ecol 214(1):11–27CrossRefGoogle Scholar
  29. Green DS, Hawkins CD (2005) Competitive interactions in sub-boreal birch-spruce forests differ on opposing slope aspects. For Ecol Manage 214(1):1–10CrossRefGoogle Scholar
  30. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  31. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  32. Holmes RL (1999) Dendrochronological Program Library (DPL). Users Manual, Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USAGoogle Scholar
  33. IPCC WG I (2007) Climate Change 2007: The Physical Science Basis Contribution of Working Group. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21(3):678–694CrossRefPubMedGoogle Scholar
  35. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Physiology monograph 1. Heron Publishing, Victoria, p 29Google Scholar
  36. Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73(2):154–163CrossRefGoogle Scholar
  37. Legendre P, Legendre L (1998) Numerical ecology: second English edition. Developments in environmental modelling 20. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  38. Liang E, Shao X, Eckstein D, Huang L, Liu X (2006) Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. For Ecol Manage 236(2):268–277CrossRefGoogle Scholar
  39. Martínez AJ, López-Portillo J (2003) Allometry of Prosopis glandulosa var. torreyana along a topographic gradient in the Chihuahuan desert. J Veg Sci 14(1):111–120Google Scholar
  40. Miller D, Archer SR, Zitzer SF, Longnecker MT (2001) Annual rainfall, topoedaphic heterogeneity and growth of an arid land tree (Prosopis glandulosa). J Arid Environ 48(1):23–33CrossRefGoogle Scholar
  41. Morello J (1958) La Provincia Fitogeográfica del Monte. Tucumán, Opera Lilloana II, p 155Google Scholar
  42. Nicolini G, Tarchiani V, Saurer M, Cherubini P (2010) Wood-growth zones in Acacia seyal Delile in the Keita Valley, Niger: is there any climatic signal? J Arid Environ 74(3):355–359CrossRefGoogle Scholar
  43. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  44. Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146(2):229–238CrossRefGoogle Scholar
  45. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11(8):474–484CrossRefGoogle Scholar
  46. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-111Google Scholar
  47. Roig FA (1993) Aportes a la etnobotánica del género Prosopis. In: IADIZA (ed) Contribuciones Mendocinas a la Quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID. Conservación y Mejoramiento de Especies del Género Prosopis. Mendoza, Argentina, pp 99–119Google Scholar
  48. Roig FA, Berra A, González Loyarte M, Martínez Carretero E, Wuilloud C (1992) La Travesía de Guanacache, tierra forestal. Multequina 1:83–91Google Scholar
  49. Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. J Veg Sci 14(4):543–550Google Scholar
  50. Rubio MC, Soria D, Salomón MA, Abraham E (2009) Delimitación de unidades geomorfológicas mediante la aplicación de técnicas de procesamiento digital de imágenes y SIG. Área no irrigada del departamento de Lavalle, Mendoza. Proyección 2:1–33Google Scholar
  51. Rundel PW, Villagra PE, Dillon MO, Roig-Juñent S, Debandi G (2007) Arid and semi-arid ecosystems. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, USAGoogle Scholar
  52. Sass-Klaassen U, Couralet C, Sahle Y, Sterck FJ (2008) Juniper from Ethiopia contains a large-scale precipitation signal. Int J Plant Sci 169(8):1057–1065CrossRefGoogle Scholar
  53. Spurr SH, Barnes BV (1980) Forest ecology (3ra edición). Wiley, New York, p 687Google Scholar
  54. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Arizona Press, TucsonGoogle Scholar
  55. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  56. Vilela AE, Rennella MJ, Ravetta DA (2003) Responses of tree-type and shrub-type Prosopis (Mimosaceae) taxa to water and nitrogen availabilities. For Ecol Manage 186(1):327–337CrossRefGoogle Scholar
  57. Villagra PE, Boninsegna JA, Alvarez JA, Cony M, Cesca E, Villalba R (2005) Dendroecology of Prosopis flexuosa woodlands in the Monte desert: implications for their management. Dendrochronologia 22:209–213CrossRefGoogle Scholar
  58. Villagra PE, Defossé GE, Del Valle HF, Tabeni S, Rostagno M, Cesca E, Abraham E (2009) Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: implications for their management. J Arid Environ 73(2):202–211CrossRefGoogle Scholar
  59. Villalba R (1985) Xylem structure and cambial activity in Prosopis flexuosa D.C. IAWA Bull 6:119–130CrossRefGoogle Scholar
  60. Villalba R, Boninsegna JA (1989) Dendrochronological studies on Prosopis flexuosa D.C. IAWA Bull 10:155–160CrossRefGoogle Scholar
  61. Villalba R, Veblen TT (1997) Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Can J For Res 27:580–597Google Scholar
  62. Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of subalpine trees in the Colorado Front Range. Ecology 75(5):1450–1462CrossRefGoogle Scholar
  63. Whitford WG (2002) Ecology of desert systems. Academic Press, LondonGoogle Scholar
  64. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213CrossRefGoogle Scholar
  65. Wu XB, Archer SR (2005) Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landscape Ecol 20(6):733–742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sergio Piraino
    • 1
    Email author
  • Elena María Abraham
    • 2
  • Angela Diblasi
    • 3
    • 4
  • Fidel Alejandro Roig Juñent
    • 1
  1. 1.Laboratorio de Dendrocronología e Historia AmbientalIANIGLA, CCT-CONICET-MendozaMendozaArgentina
  2. 2.Laboratorio de Desertificación y Ordenamiento Territorial (LADyOT)IADIZA, CCT-CONICET-MendozaMendozaArgentina
  3. 3.Facultad de Ciencias EconómicasUNCuyo, Centro UniversitarioMendozaArgentina
  4. 4.Área de Ciencias Exactas/CCT-CONICET-MendozaMendozaArgentina

Personalised recommendations