Skip to main content

Advertisement

Log in

Effects of soil warming and nitrogen foliar applications on bud burst of black spruce

  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.

Abstract

The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Uria P, Korner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218

    Article  Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric For Meteorol 165:73–81

    Article  Google Scholar 

  • Begum S, Nakaba S, Islam MA, Yamagishi Y, Funada R (2012) Effects of low temperature in reactivated cambial cells induced by localized heating during winter dormancy in conifers. Am J Plant Physiol 7:30–40

    Article  Google Scholar 

  • Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Change Biol 5:245–253

    Article  Google Scholar 

  • Bigras FJ, Gonzalez A, DAoust AL, Hebert C (1996) Frost hardiness, bud phenology and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes. New For 12:243–259

  • Boulouf Lugo J, Deslauriers A, Rossi S (2012) Duration of xylogenesis in black spruce lengthened between 1950 and 2010. Ann Bot 110:1099–1108

    Article  PubMed Central  PubMed  Google Scholar 

  • Bronson DR, Gower ST, Tanner M, Van Herk I (2009) Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob Change Biol 15:1534–1543

    Article  Google Scholar 

  • Butler SM, Melillo JM, Johnson JE, Mohan J, Steudler PA, Lux H, Burrows E, Smith RM, Vario CL, Scott L, Hill TD, Aponte N, Bowles F (2012) Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure. Oecologia 168:819–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284

    Article  CAS  Google Scholar 

  • D’Orangeville L, Côté B, Houle D, Morin H, Duchesne L (2013) A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir. Trees 27:1525–1536

    Article  Google Scholar 

  • de Fay E, Vacher V, Humbert F (2000) Water-related phenomena in winter buds and twigs of Picea abies L. (Karst.) until bud-burst: a biological, histological and NMR study. Ann Bot 86:1097–1107

    Article  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nature reviews. Moll Cell Biol 12:211–221

    CAS  Google Scholar 

  • Duchesne L, Houle D (2008) Impact of nutrient removal through harvesting on the sustainability of the boreal forest. Ecol Appl 18:1642–1651

    Article  PubMed  Google Scholar 

  • Fløistad IS, Kohmann K (2004) Influence of nutrient supply on spring frost hardiness and time of bud break in Norway spruce (Picea abies (L.) Karst.) seedlings. New For 27:1–11

    Article  Google Scholar 

  • Fu YH, Campioli M, Deckmyn G, Janssens IA (2013) Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agric For Meteorol 181:125–132

    Article  Google Scholar 

  • Gaige E, Dail DB, Hollinger DY, Davidson EA, Fernandez IJ, Sievering H, White A, Halteman W (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10:1133–1147

    Article  CAS  Google Scholar 

  • Greer DH, Wunsche JN, Norling CL, Wiggins HN (2006) Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of ‘Braeburn’ (Malus domestica) apple trees. Tree Physiol 26:105–111

    Article  PubMed  Google Scholar 

  • Hanninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898

    Article  PubMed  Google Scholar 

  • Houle D, Moore J-D (2008) Soil solution, foliar concentrations and tree growth response to 3-year of ammonium-nitrate addition in two boreal forests of Québec, Canada. Forest Ecolo Manag 255:2049–2060

    Article  Google Scholar 

  • Houle D, Bouffard A, Duchesne L, Logan T, Harvey R (2012) Projections of future soil temperature and water content for three southern Quebec forested sites. J Clim 25:7690–7701

    Article  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Kreyling J, Beier C (2013) Complexity in climate change manipulation experiments. Bioscience 63:763–767

    Article  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzil GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    Article  CAS  PubMed  Google Scholar 

  • Kula E, Peŝlová A, Martinek P (2012) Effects of nitrogen on growth properties and phenology of silver birch (Betula pendula Roth). J For Sci 58:391–399

    CAS  Google Scholar 

  • Laube J, Sparks TH, Estrella N, Hofler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biol 20:170–182

    Article  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882

    Article  PubMed  Google Scholar 

  • Lopushinsky W, Max TA (1990) Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New For 4:107–124

    Article  Google Scholar 

  • Lumme I, Smolander A (1996) Effect of nitrogen deposition level on nitrogen uptake and bud burst in Norway spruce (Picea abies Karst) seedlings and N uptake by soil microflora. Forest Ecolo Manag 89:197–204

    Article  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730

    Article  PubMed  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2012a) Xylogenesis in black spruce: does soil temperature matter? Tree Physiol 32:74–82

    Article  PubMed  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S, Houle D (2012b) Increasing nitrogen availability and soil temperature: effects on xylem phenology and anatomy of mature black spruce. Can J For Res 42:1277–1288

    Article  CAS  Google Scholar 

  • Lyr H (1996) Effect of the root temperature on growth parameters of various European tree species. Ann Sci For 53:317–323

    Article  Google Scholar 

  • Maynard DG, Paré D, Thiffault E, Lafleur B, Hogg KE, Kishchuk B (2014) How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ Rev 22:161–178

    Article  CAS  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–9512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray MB, Smith RI, Leith ID, Fowler D, Lee HSJ, Friend AD, Jarvis PG (1994) Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiol 14:691–706

    Article  PubMed  Google Scholar 

  • Numainville G, Desponts M (2004) Les stades de débourrement des bourgeons foliaires de l’épinette noire. Gouvernement du Québec (Ministère des Ressources naturelles, de la Faune et des Parcs—Direction de la recherche forestière), Québec, Canada

  • Omarov RT, Akaba S, Koshiba T, Lips SH (1999) Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J Exp Bot 50:63–69

    Article  CAS  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872

    Article  Google Scholar 

  • Partanen J, Koski V, Hanninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816

    Article  PubMed  Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Zhou L, Wang T (2013) Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ Res Lett 8:014008

    Article  Google Scholar 

  • Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365

    Article  Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Article  Google Scholar 

  • Puig J, Pauluzzi G, Guiderdoni E, Gantet P (2012) Regulation of shoot and root development through mutual signaling. Mol Plant 5:974–983

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  PubMed  Google Scholar 

  • Repo T, Lehto T, Finer L (2008) Delayed soil thawing affects root and shoot functioning and growth in Scots pine. Tree Physiol 28:1583–1591

    Article  PubMed  Google Scholar 

  • Richardson AD, O’Keefe J (2009) Phenological differences between understory and overstory. In: Noormets A (ed) Phenology of ecosystem processes. Springer, New York, pp 87–117

    Chapter  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Rossi S (2014) Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances. Int J Biometeorol. doi:10.1007/s00484-014-0900-y

    Google Scholar 

  • Rossi S, Bousquet J (2014) The bud break process and its variation among local populations of boreal black spruce. Front Plant Sci. doi:10.3389/fpls.2014.00574

    Google Scholar 

  • Rossi S, Morin H, Deslauriers A (2011) Multi-scale influence of snowmelt on xylogenesis of Black Spruce. Arct Antarct Alp Res 43:457–464

    Article  Google Scholar 

  • Rossi S, Bordeleau A, Houle D, Morin H (2012) Effect of chronic ammonium nitrate addition on the ectomycorrhizal community in a black spruce stand. Can J For Res 42:1204–1212

    Article  CAS  Google Scholar 

  • Rossi S, Cairo E, Krause C, Deslauriers A (2014) Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec. Ann For Sci, Canada. doi:10.1007/s13595-014-0399-8

    Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monograph 73:643–662

    Article  Google Scholar 

  • Rustad LE (2008) The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–235

    Article  CAS  PubMed  Google Scholar 

  • Sachs T, Thimann KV (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54:136–144

    Article  CAS  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene Flow and Local Adaptation in Trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Sigurdsson BD (2001) Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees 15:403–413

    Article  Google Scholar 

  • Sit V, Poulin-Costello M (1994) Catalog of curves for curve fitting. In: Bergerud W, Sit V (eds) Biometrics information handbook series no. 4. Forest Science Research Branch, Ministry of Forest, Province of British Columbia, Canada, p 110

    Google Scholar 

  • Sparks JP (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159:1–13

    Article  PubMed  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  CAS  PubMed  Google Scholar 

  • Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102:667–674

    Article  PubMed Central  PubMed  Google Scholar 

  • Thitithanakul S, Petel G, Chalot M, Beaujard F (2012) Supplying nitrate before bud break induces pronounced changes in nitrogen nutrition and growth of young poplars. Funct Plant Biol 39:795–803

    Article  CAS  Google Scholar 

  • Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J Forest Res 132:1–8

    Article  Google Scholar 

  • Vitasse Y, Basler D (2014) Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol 34:174–183

    Article  PubMed  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  PubMed  Google Scholar 

  • Zhang X, Lei Y, Ma Z, Kneeshaw D, Peng C (2014) Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate. Ecol Evol 4:2384–2394

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada with the participation of Hydro-Québec, Abitibi-Bowater inc., Consortium sur les changements climatiques Ouranos, Ministère des Ressources naturelles et de la Faune du Québec (MRNF) and the Consortium de recherche sur la forêt boréale commerciale. The authors thank D. Laprise, J. Piquette, F. Gionest for technical support and A. Garside for checking the English text. We are also grateful for the referees’ comments that helped to improve this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Deslauriers.

Additional information

Communicated by T. Koike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Barba, D., Rossi, S., Deslauriers, A. et al. Effects of soil warming and nitrogen foliar applications on bud burst of black spruce. Trees 30, 87–97 (2016). https://doi.org/10.1007/s00468-015-1152-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1152-0

Keywords

Navigation