Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability

Abstract

Key message

Analyses of tree-ring anatomical features showed to be more sensitive to specific intra-seasonal environmental factors than tree-ring width in Tectona grandis and Pinus caribaea growing in a subtropical region.

Abstract

Earlywood vessels (EWV) and intra-annual density fluctuations (IADFs) in tree rings are influenced by intra-seasonal environmental factors, as have mostly been studied in temperate climate areas. However, it is not clear whether such anatomical traits can also be used as climate proxies in tropical regions. Therefore, the main objective of this study was to analyse the relationship between the anatomical features of two tropical species growing in Piracicaba, State of Sao Paulo, Southeast Brazil—EWV in Tectona grandis and IADFs in Pinus caribaea—and the climate. Wood cores were extracted by increment borer and processed using the classical methodology of dendrochronology. Chronologies of the mean vessel cross-sectional area of the first row of each tree ring (FRV) and the entire earlywood (EWV) in T. grandis, and of IADF in earlywood (IADF-E) and latewood (IADF-L) in P. caribaea were developed for the period 1988–2011 and 1982–2011, respectively. Our results showed a significant correlation of EWV and FRV with mean accumulated precipitation during the summer season (DJF) and with mean temperature in December. The IADF-Es in P. caribaea were related to the precipitation of DJF as well as the temperature of April, whereas IADF-Ls were linked to precipitation in fall (MAM). In general, the tree-ring anatomical variables were more influenced by intra-seasonal environmental factors than tree-ring width in both species, indicating their great potential for dendroecological studies in subtropical regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  2. Baillie MGL, Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree-Ring Bull 33:7–14

    Google Scholar 

  3. Ballesteros JA, Stoffel M, Bodoque JM, Bollschweiler M, Hitz O, Diez-Herrero A (2010) Changes in wood anatomy in tree rings of Pinus pinaster Ait. following wounding by flash floods. Tree-Ring Res 66:93–103. doi:10.3959/2009-4.1

    Article  Google Scholar 

  4. Battipaglia G, De Micco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P (2014) Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ 37:382–391. doi:10.1111/pce.12160

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharyya A, Eckstein D, Shah SK, Chaudhary V (2007) Analyses of climatic changes around Perambikulum, South India, based on early wood mean vessel area of teak. Curr Sci 93:1159–1164

    Google Scholar 

  6. Brienen R, Zuidema P (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12. doi:10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  7. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  8. Campelo F, Gutierrez E, Ribas M, Nabais C, Freitas H (2007) Relationships between climate and double rings in Quercus ilex from northeast Spain. Can J Forest Res 37:1915–1923. doi:10.1139/X07-050

    Article  Google Scholar 

  9. Campelo F, Nabais C, Gutierrez E, Freitas H, García-González I (2010) Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24:463–470. doi:10.1007/s00468-010-0414-0

    Article  Google Scholar 

  10. Campelo F, Vieira J, Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees 27:763–772. doi:10.1007/s00468-012-0831-3

    Article  Google Scholar 

  11. Carlquist S (2009) Non-random vessel distribution in woods: patterns, modes, diversity, correlations. ALISO 27:39–58. doi:10.5642/aliso.20092701.04

    Article  Google Scholar 

  12. Catharino ELM (1989) Estudos fisionômico-florísticos e fitossociológico em matas residuais secundárias do município de Piracicaba, SP. Dissertation, University of Campinas

  13. Cherubini P, Piussi P, Schweingruber FH (1996) Spatio temporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Can J Forest Res 26:991–1001. doi:10.1016/S1631-0691(03)00075-1

    Article  Google Scholar 

  14. Cook ER (1999) TurboARSTAN program and reference manual V 2.0.7 February. Palisades, New York

  15. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7(3):361–370. doi:10.1177/095968369700700314

    Article  Google Scholar 

  16. Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian Monsoon failure and megadrought during the last millennium. Science 328:486–489. doi:10.1126/science.1185188

    Article  CAS  PubMed  Google Scholar 

  17. Copenheaver CA, Pokorski EA, Currie JE, Abrams MD (2006) Causation of false ring formation in Pinus banksiana: a comparison of age, canopy class, climate, and growth rate. For Ecol Manage 236:348–355. doi:10.1016/j.foreco.2006.09.020

    Article  Google Scholar 

  18. Copenheaver CA, Gartner H, Schafer I, Vaccari FP, Cherubini P (2010) Drought-triggered false ring formation in a Mediterranean shrub. Botany 88:545–555. doi:10.1139/B10-029

    Article  Google Scholar 

  19. De Luis M, Novak K, Raventós J et al (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169. doi:10.1016/j.dendro.2011.01.005

    Article  Google Scholar 

  20. De Micco V, Battipaglia G, Cherubini P, Aronne G (2014) Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia 32:1–6. doi:10.1016/j.dendro.2013.06.001

    Article  Google Scholar 

  21. Die A, Kitin P, Kouame FN, Van den Bulcke J, Van Acker J, Beeckman H (2012) Fluctuations of cambial activity in relation to precipitation result in annual rings and intra annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann Bot 110:861–873. doi:10.1093/aob/mcs145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dunisch O, Montoia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250. doi:10.1007/s00468-002-0230-2

    Google Scholar 

  23. Eckstein D (2004) Change in past environments: secrets of the tree hydrosystem. New Phytol 163:1–4. doi:10.1111/j.1469-8137.2004.01117.x

    Article  Google Scholar 

  24. Edmondson JR (2010) The meteorological significance of false rings in eastern redcedar (Juniperus virginiana L.) from the Southern Great Plains. USA. Tree-Ring Res 66:19–34. doi:10.3959/2008-13.1

    Article  Google Scholar 

  25. Eguiluz PT (1982) Clima y distribución del genero Pinus en México. Rev Mex Cien For 7:30–44

    Google Scholar 

  26. Ferreira ATB, Tomazello Filho M (2009) Caracterização dos anéis de crescimento de árvores de Pinus caribaea var. hondurensis Barr. et Golf. por densitometria de raios X. Sci For 37:287–298

    Google Scholar 

  27. Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86. doi:10.1111/j.1469-8137.2004.01089.x

    Article  Google Scholar 

  28. Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570. doi:10.1111/j.1469-8137.2006.01945.x

    Article  PubMed  Google Scholar 

  29. Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53. doi:10.1111/j.1469-8137.2009.03030.x

    Article  PubMed  Google Scholar 

  30. Fonti P, Bryukhanova M, Myglan V, Naumova O, Kirdyanov A, Vaganov E (2013) Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from Russian Altay. Am J Bot 100:1332–1343. doi:10.3732/ajb.1200484

  31. Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  32. García-González I, Fonti P (2006) Selecting earlywood vessels to maximize their environmental signal. Tree Physiol 26:1289–1296. doi:10.1093/treephys/26.10.1289

    Article  PubMed  Google Scholar 

  33. Giantomasi MA, Junent FAR, Villagra PE, Srur AM (2009) Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23:117–126. doi:10.1007/s00468-008-0260-5

    Article  Google Scholar 

  34. Gottwald H, Parameswaran N (1980) Anatomy of wood and bark of Tectona (Verbenaceae) in relation to taxonomy. Bot Jahrb Syst 101:363–384

    Google Scholar 

  35. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  36. Holmes RL (1986) Quality control of crossdating and measuring: a user’s manual for program COFECHA. In: Holmes RL, Adams RK, Fritts HC (eds) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Tucson, Arizona, pp 41–49

    Google Scholar 

  37. Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–234. doi:10.1029/95GB00321

    Article  CAS  Google Scholar 

  38. Kunert N, Schwendenmann L, Hölscher D (2010) Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agric For Meteorol 150:411–419. doi:10.1016/j.agrformet.2010.01.006

    Article  Google Scholar 

  39. Leoni JM, Fonseca SF, Schongart J (2011) Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. For Ecol Manag 261:62–67. doi:10.1016/j.foreco.2010.09.025

    Article  Google Scholar 

  40. Lilienfein J, Wilcke W, Ayarza MA, Vilela L, Lima SC, Zech W (2000) Soil acidification in Pinus caribaea forests on Brazilian savanna Oxisols. For Ecol Manag 128:145–157. doi:10.1016/S0378-1127(99)00143-7

    Article  Google Scholar 

  41. Lindorf H (1994) Eco-anatomical wood features of species from a very dry tropical forest. IAWA J 15:361–376

    Article  Google Scholar 

  42. Locosselli G, Buckeridge M, Moreira M, Ceccantini G (2013) A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 27:25–36. doi:10.1007/s00468-012-0764-x

  43. Marchand N, Filion L (2012) False rings in the white pine (Pinus strobus) of the Outaouais Hills, Quebec (Canada), as indicators of water stress. Can J For Res 42:12–22. doi:10.1139/x11-151

    Article  Google Scholar 

  44. Masiokas M, Villalba R (2004) Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia. Trees 18:696–704. doi:10.1007/s00468-004-0355-6

    Article  Google Scholar 

  45. Mattos PP, Santos AT, Oliveira JM, Rosot MAD (2007) Dendrocronologia de espécies de Floresta Ombrófila Mista do munícipio de Candói, PR. Pesquisa Florestal 54:153–156

  46. Miller A (2007) Fire history of Caribbean Pine (Pinus caribaea var. bahamensis (Griseb.) W.H. Barrett & Golfari) Forests on Abaco Island, the Bahamas. M.Sc. Thesis, University of Tennessee

  47. O’Brien JJ, Hiers JK, Callaham MA, Mitchell RJ, Jack SB (2008) Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. Ambio 37:542–547. doi:10.1579/0044-7447-37.7.542

    Article  PubMed  Google Scholar 

  48. Olajidel O, Ndaeyo NU, Ekongl AB (2010) Dendroclimatology of a Pinus caribaea plantation in the tropical rainforest area of Southweastern Nigeria. J Agric Biotechnol Ecol 3:92–97

    Google Scholar 

  49. Olano JM, Arzac A, Garcia-Cervigon AI, von Arx G, Rozas V (2013) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 198:486–495. doi:10.1111/nph.12113

    Article  PubMed  Google Scholar 

  50. Oliveira JM, Roig FA, Pillar VD (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Austral Ecol 35:134–147. doi:10.1111/j.1442-9993.2009.02018.x

    Article  Google Scholar 

  51. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series. Dendrochronologia 15:89–99

    Google Scholar 

  52. Panayotov MP, Zafirov N, Cherubini P (2013) Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees 27:211–227. doi:10.1007/s00468-012-0789-1

    Article  Google Scholar 

  53. Pandey D, Brown C (2000) Teak: a global overview. Unasylva 51(201):3–13

    Google Scholar 

  54. Priya KM, Bhat KM (1998) False ring formation in teak (Tectona grandis L.f.) and the influence of environmental factors. For Ecol Manage 108:215–222. doi:10.1016/S0378-1127(98)00227-8

    Article  Google Scholar 

  55. Priya KM, Bhat KM (1999) Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). IAWA J 20:181–191

    Article  Google Scholar 

  56. Pumijumnong N (1997) Cambium development of teak (Tectona grandis L.) in Thailand and its relationship to climate. Proceedings of the 97th international symposium on wood science and technology, wood-human-environment, October 23–24, 1997, Seoul, Korea, pp 61–72

  57. Pumijumnong N, Wanyaphet T (2006) Seasonal cambial activity and tree-ring formation of Pinus merkusii and Pinus kesiya (Pinaceae) in Thailand in dependence on climate. For Ecol Manage 226:279–289. doi:10.1016/j.foreco.2006.01.040

    Article  Google Scholar 

  58. Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis on northern Thailand. IAWA J 16:385–392

    Article  Google Scholar 

  59. Rao KS, Rajput KS (1999) Seasonal behaviour of vascular cambium in teak (Tectona grandis L.f) growing in moist deciduous and dry deciduous forest of Gujarat. IAWA J 20:85–93

    Article  Google Scholar 

  60. Robert EMR, Koedam N, Beeckman H, Schmitz N (2009) A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Funct Ecol 23:649–657. doi:10.1111/j.1365-2435.2009.01551.x

    Article  Google Scholar 

  61. Rozas V, García-González I, Zas R (2011) Climatic control of intraannual wood density fluctuations of Pinus pinaster in NW Spain. Trees 25:443–453. doi:10.1007/s00468-010-0519-5

    Article  Google Scholar 

  62. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics a review. Trees 25:3–16. doi:10.1007/s00468-010-0480-3

    Article  Google Scholar 

  63. Schuhli GS, Paludzyszyn Filho E (2010) O cenário nacional da silvicultura de teca (Tectona grandis L.f.) e perspectivas de melhoramento. Pesqui Florest Bras 30(63):217–230. doi:10.4336/2010.pfb.30.63.217

    Article  Google Scholar 

  64. Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Reidel, Dordrecht

  65. Schweingruber FH (1996) Tree rings and environment: dendroecology. Berne, Switzerland

    Google Scholar 

  66. Shah SK, Bhattacharyya A, Chaudhary V (2007) Reconstruction of June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh. India. Dendrochronologia 25:57–64. doi:10.1016/j.dendro.2007.02.001

    Article  Google Scholar 

  67. Schongart J, Junk WJ, Piedade MTF, Ayres JM, Huttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Nino–Southern Oscillation effect. Glob Chang Biol 10:683–692

  68. Singh ND, Venugopal N (2011) Cambial activity and annual rhythm of xylem production of Pinus kesiya Royle ex. Gordon (Pinaceae) in relation to phenology and climatic factors growing in sub-tropical wet forest of North East India. Flora 206:198–204. doi:10.1016/j.flora.2010.04.021

    Article  Google Scholar 

  69. Soliz-Gamboa CC, Rozendaal DMA, Ceccantini G, Angyalossy V, van der Borg K, Zuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. doi:10.1007/s00468-010-0468-z

    Article  Google Scholar 

  70. Tomazello Filho M, Cardoso NS (1999) Seasonal variations of the vascular cambium of teak (Tectona grandis L.) in Brazil. In: Wimmer R, Vetter RE (eds) Tree-ring analysis: biological, methodological and environmental aspects. CAB International, London, pp 147–154

    Google Scholar 

  71. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer Verlag, Berlin

    Google Scholar 

  72. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. doi:10.1007/s00468-008-0273-0

    Article  Google Scholar 

  73. von Arx G, Archer SA, Hughes MK (2012) Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann Bot 109:1091–1100. doi:10.1093/aob/mcs030

    Article  Google Scholar 

  74. von Arx G, Kueffer C, Fonti P (2013) Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J 34:433–445. doi:10.1163/22941932-00000035

    Article  Google Scholar 

  75. Wigley TML, Briffa KR, Jones D (1984) On the average value of correlated time series with application in dendroclimatology and hydrometereology. J Clim App Meteorol 23:201–221. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  76. Wimmer R (2002) Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20:21–36. doi:10.1078/1125-7865-00005

    Article  Google Scholar 

  77. Wimmer R, Strumia G, Holawe F (2000) Use of false rings in Austrian pine to reconstruct early growing season precipitation. Can J For Res 30:1691–1697. doi:10.1139/cjfr-30-11-1691

    Article  Google Scholar 

  78. Worbes M (1995) How to measure growth dynamics in tropical trees, a review. IAWA J 16:337–351

    Article  Google Scholar 

  79. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  80. Wyka TP, Oleksyn J, Zytkowiak R, Karolewski P, Jagodzinski AM, Reich PB (2012) Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia 170:11–24. doi:10.1007/s00442-012-2279-y

    Article  PubMed Central  PubMed  Google Scholar 

  81. Young PJ, Megonigal JP, Sharitz RR, Day FP (1993) False ring formation in bald cypress (Taxodium distichum) saplings under two flooding regimes. Wetlands 13:293–298. doi:10.1007/BF03161295

    Article  Google Scholar 

  82. Zang C, Biondi F (2013) Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74. doi:10.1016/j.dendro.2012.08.001

    Article  Google Scholar 

  83. Zeng ZZ, Piao SL, Chen AP, Lin X, Nan HJ, Li JS, Ciais P (2013) Committed changes in tropical tree cover under the projected 21st century climate change. Sci Rep 3:1951. doi:10.1038/srep01951

    PubMed Central  PubMed  Google Scholar 

  84. Zuidema PA, Brienen JW, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194. doi:10.1016/j.tree.2011.12.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Priscila Amaral de Sá and MSc. Claudio Roberto Anholetto Júnior for field and laboratory support. We would also like to thank Dr. Ana Carolina Maioli Campos Barbosa and Dr. Clóvis Angeli Sansigolo for their contributions to this study, as well as the “National Counsel of Technological and Scientific Development” (CNPq) for the financial support (Project 561910/2010-3), its coordinator, Dr. Edson José Vidal da Silva, the National Commission for Scientific and Technological Research of Chile (CONICYT- PAI/INDUSTRIA 79090016) and Siria Rosales for English corrections and two anonymous reviewers for valuable feedback on and improvements to an earlier draft of this article.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Venegas-González.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venegas-González, A., von Arx, G., Chagas, M.P. et al. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees 29, 423–435 (2015). https://doi.org/10.1007/s00468-014-1121-z

Download citation

Keywords

  • Tropical dendrochronology
  • Ecological wood anatomy
  • Xylem hydraulics
  • IADF
  • Vessel size