, Volume 28, Issue 5, pp 1289–1304 | Cite as

Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco)

  • Manuela Ruiz Diaz Britez
  • Anne-Sophie Sergent
  • Alejandro Martinez Meier
  • Nathalie Bréda
  • Philippe Rozenberg
Original Paper


Key message

Proxies of adaptive traits for resistance to drought were discovered among original annual ring density variables in Douglas fir.


A comparison of dead and surviving Douglas fir trees following the 2003 drought was made to define proxies of adaptive traits for resistance to drought. Increment cores were sampled from trees from three French regions: Centre, Midi-Pyrénées and Burgundy. Original tree-ring variables were calculated, based on a sliding density criterion dividing the microdensity profile into high- and low-density segments. Tree rings were analysed at each site in a number of consecutive annual rings before the 2003 drought event. Comparison between pairs of surviving and dead trees and between pairs of randomly selected trees (whether dead or alive) supports the evidence of systematic dissimilarities between surviving and dead trees in a number of original density variables. Correlation analysis between original and conventional ring density variables indicates a weak association. We found that the surviving trees were denser than the dead trees in all three sites, but that the denser part of the ring varied from region to region. We identified several original density variables intended to be used as proxies of adaptive traits in future studies of genetic determinism of Douglas fir resistance to drought.


Douglas fir Drought Mortality Survival Adaptation Adaptive traits Wood density Microdensity 


  1. Aber J, Neilson RP, McNulty S, Lenihan JM, Bachelet D, Drapek RJ (2001) Forest processes and global environmental change: predicting the effects of individual and multiple stressors. Bioscience 51(9):735–751. doi:10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2Google Scholar
  2. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci 106(17 (avril 28)):7063–7066. doi:10.1073/pnas.0901438106 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alberto FJ, Aitken SN, Alia R, Gonzalez-Martinez SC, Hanninen H, Kremer A, Lefevre F et al (2013) Potential for evolutionary responses to climate change––evidence from tree populations. Glob Change Biol 19(6):1645–1661. doi:10.1111/gcb.12181 CrossRefGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4 (février 5)):660–684. doi:10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  5. Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci 109(1 (janvier 3)):233–237. doi:10.1073/pnas.1107891109 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anderegg LDL, Anderegg WRL, Abatzoglou J, Hausladen AM, Berry JA (2013) Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA. Glob Change Biol 19(5 (mai)):1526–1537. doi:10.1111/gcb.12146 CrossRefGoogle Scholar
  7. Aranda I, Gil-Pelegrín E, Gascó A, Guevara MA, Cano JF, De Miguel M, Ramírez-Valiente JA et al (2012) Drought response in forest trees: from the species to the gene. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 293–333. doi:10.1007/978-3-642-32653-0_12 CrossRefGoogle Scholar
  8. Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112(7 (janvier 11)):1431–1437. doi:10.1093/aob/mct204 PubMedCrossRefGoogle Scholar
  9. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63(6):625–644CrossRefGoogle Scholar
  10. Cregg BM (2004) Improving drought tolerance of trees: theoretical and practical considerations. In: Fernandez T, Davidson CG (eds) Nursery crops development, Evaluation, production and use, vol 1. International Society Horticultural Science, Leuven, pp 147–158Google Scholar
  11. Cruiziat P, Cochard H, Ameglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59(7):723–752CrossRefGoogle Scholar
  12. Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For Ecol Manag 257(1):182–189CrossRefGoogle Scholar
  13. Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2011) Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in douglas-fir (Pseudotsuga Menziesii (Mirb.)). Ann For Sci 68(4):747–757. doi:10.1007/s13595-011-0091-1 Google Scholar
  14. Domec JC, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53(379):2369–2379PubMedCrossRefGoogle Scholar
  15. Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32(2 (février)):178–187. doi:10.1093/treephys/tps004 PubMedCrossRefGoogle Scholar
  16. Franceschini T, Longuetaud F, Bontemps J-D, Bouriaud O, Caritey B-D, Leban J-M (2013) Effect of ring width, cambial age, and climatic variables on the within-ring wood density profile of Norway spruce Picea Abies (L.) Karst. Trees 27(4):913–925. doi:10.1007/s00468-013-0844-6 Google Scholar
  17. Guay R, Gagnon R, Morin H (1992) A new automatic and interactive tree ring measurement system based on a line scan camera. For Chron 68(1):138–141CrossRefGoogle Scholar
  18. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Persp Plant Ecol Evol System 4(2):97–115. doi:10.1078/1433-8319-00017 Google Scholar
  19. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4):457–461. doi:10.1007/s004420100628 Google Scholar
  20. Hanson PJ, Weltzin JF (2000) Drought disturbance from climate change: response of US forests. Sci Total Environ 262(3):205–220. doi:10.1016/S0048-9697(00)00523-4 PubMedCrossRefGoogle Scholar
  21. Hiromi T, Ichie T, Kenzo T, Ninomiya I (2012) Interspecific variation in leaf water use associated with drought tolerance in four emergent Dipterocarp species of a tropical rain forest in Borneo. J For Res 17(4):369–377. doi:10.1007/s10310-011-0303-4 Google Scholar
  22. Ivkovic M, Rozenberg P (2004) A method for describing and modelling of within-ring wood density distribution in clones of three coniferous species. Ann For Sci 61(8):759–769CrossRefGoogle Scholar
  23. Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M, Wavresky P (2010) Les types de climats en France, une construction spatiale. Cybergeo (juin 18). doi:10.4000/cybergeo.23155.
  24. Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  25. Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus Sylvatica. Mol Ecol 15(11 (octobre)):3469–3480. doi:10.1111/j.1365-294X.2006.03027.x PubMedCrossRefGoogle Scholar
  26. Kavanagh KL, Bond BJ, Aitken SN, Gartner BL, Knowe S (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol 19(1 (janvier 1)):31–37. doi:10.1093/treephys/19.1.31 PubMedCrossRefGoogle Scholar
  27. Koubaa A, Isabel N, Zhang SY, Beaulieu J, Bousquet J (2005) Transition from Juvenile to mature wood in black spruce (Picea Mariana (Mill.) BSP). Wood Fiber Sci 37(3):445–455Google Scholar
  28. Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data. Set New Phytol 188(4):1124–1136. doi:10.1111/j.1469-8137.2010.03444.x CrossRefGoogle Scholar
  29. Kukowski KR, Schwinning S, Schwartz BF (2013) Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. Oecologia 171(4):819–830. doi:10.1007/s00442-012-2466-x Google Scholar
  30. Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS One 6(8):e23476. doi:10.1371/journal.pone.0023476 PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lamy J-B, Lagane F, Plomion C, Cochard H, Delzon S (2012) Micro-evolutionary patterns of juvenile wood density in a pine species. Plant Ecol 213(11 (novembre)):1781–1792. doi:10.1007/s11258-012-0133-2 CrossRefGoogle Scholar
  32. Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24(4):701–705. doi:10.1111/j.1365-2435.2010.01698.x CrossRefGoogle Scholar
  33. Lenz O, Schar E, Schweingruber Fh (1976) Methodological problems relative to measurement of density and width of growth rings by X-ray densitogrames of wood. Holzforschung 30(4):114–123. doi:10.1515/hfsg.1976.30.4.114 CrossRefGoogle Scholar
  34. Martinez-Meier A, Sanchez L, Pastorino M, Gallo L, Rozenberg P (2008a) What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manage 256(4):837–843CrossRefGoogle Scholar
  35. Martinez-Meier A, Sanchez L, Salda GD, Pastorino MJM, Gautry JY, Gallo LA, Rozenberg P (2008b) Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France-art. no. 102. Ann For Sci 65(1):102CrossRefGoogle Scholar
  36. Martinez-Vilalta, J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and mediterranean tree species. J Ecol (Oxford) 98(6):1462–1475. doi:10.1111/j.1365-2745.2010.01718.x Google Scholar
  37. Martinez-Vilalta J, Lloret F, Breshears DD (2012) Drought-induced forest decline: causes, scope and implications. Biol Lett 8(5):689–691. doi:10.1098/rsbl.2011.1059 PubMedCrossRefPubMedCentralGoogle Scholar
  38. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, et al. (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739. doi:10.1111/j.1469-8137.2008.02436.x Google Scholar
  39. Pharis RP, Ferrell WK (1966) Differences in drought resistance between coastal and inland sources of Douglas fir. Canad J Bot 44(12):1651–1659. doi:10.1139/b66-177 CrossRefGoogle Scholar
  40. Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus Sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS One 7 (3):1–8. doi:10.1371/journal.pone.0033636
  41. Polge H (1978) 15 years of wood radiation densitometry. Wood Sci Technol 12(3):187–196CrossRefGoogle Scholar
  42. Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185(2):481–492. doi:10.1111/j.1469-8137.2009.03092.x
  43. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  44. Rathgeber CBK, Decoux V, Leban JM (2006) Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 63(7):699–706CrossRefGoogle Scholar
  45. Rosner S, Klein A, Muller U, Karlsson B (2007) Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiol 27(8):1165–1178PubMedCrossRefPubMedCentralGoogle Scholar
  46. Rozenberg P, Franc A, Mamdy C, Launay J, Schermann N, Bastien JC (1999) Genetic control of stiffness of standing Douglas fir; from the standing stem to the standardised wood sample, relationships between modulus of elasticity and wood density parameters Part II. Ann For Sci 56(2):145–154CrossRefGoogle Scholar
  47. Sergent A-S (2011) Diversité de la réponse au déficit hydrique et vulnérabilité au dépérissement du douglas. Université d’Orléans, INRA Orléans FranceGoogle Scholar
  48. Sergent A-S, Rozenberg P, Bréda N (2012) Douglas-Fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites. Ann For Sci 2012:1–12. doi:10.1007/s13595-012-0220-5
  49. Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME et al (2009) Widespread increase of tree mortality rates in the Western US. Science 323(5913 (janvier 23)):521–524. doi:10.1126/science.1165000 PubMedCrossRefGoogle Scholar
  50. Wang W, Changhui P, Kneeshaw DD, Larocque GR, Luo Z (2012) Drought-induced tree mortality: ecological consequences, causes, and modeling. Environ Rev 20(2 (juin)):109–121. doi:10.1139/a2012-004 CrossRefGoogle Scholar
  51. Williams AP, Allen CD, Miliar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010) Forest responses to increasing aridity and warmth in the Southwestern US. Proc Natl Acad Sci USA 107 (50):21289–21294. doi:10.1073/pnas.0914211107
  52. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31(11 (novembre 1)):1175–1182. doi:10.1093/treephys/tpr101 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Manuela Ruiz Diaz Britez
    • 1
    • 2
  • Anne-Sophie Sergent
    • 2
    • 3
  • Alejandro Martinez Meier
    • 3
  • Nathalie Bréda
    • 4
  • Philippe Rozenberg
    • 2
  1. 1.Parque Tecnológico MisionesUniversidad Nacional de MisionesPosadasArgentina
  2. 2.INRA Val de LoireUR0588, Unité d′Amélioration Génétique et Physiologie ForestièresOrléans Cedex 2France
  3. 3.INTA, EEA BarilocheUnidad de Ecología ForestalSan Carlos de BarilocheArgentina
  4. 4.INRA-UHPUMR 1137, Forest Ecology and Ecophysiology UnitChampenouxFrance

Personalised recommendations