Skip to main content

Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems

Abstract

Key message

Stand age, water availability, and the length of the warm period are the most influencing controls of forest structure, functioning, and efficiency.

Abstract

We aimed to discern the distribution and controls of plant biomass, carbon fluxes, and resource-use efficiencies of forest ecosystems ranging from boreal to tropical forests. We analysed a global forest database containing estimates of stand biomass and carbon fluxes (400 and 111 sites, respectively) from which we calculated resource-use efficiencies (biomass production, carbon sequestration, light, and water-use efficiencies). We used the WorldClim climatic database and remote-sensing data derived from the Moderate Resolution Imaging Spectroradiometer to analyse climatic controls of ecosystem functioning. The influences of forest type, stand age, management, and nitrogen deposition were also explored. Tropical forests exhibited the largest gross carbon fluxes (photosynthesis and ecosystem respiration), but rather low net ecosystem production, which peaks in temperate forests. Stand age, water availability, and length of the warm period were the main factors controlling forest structure (biomass) and functionality (carbon fluxes and efficiencies). The interaction between temperature and precipitation was the main climatic driver of gross primary production and ecosystem respiration. The mean resource-use efficiency varied little among biomes. The spatial variability of biomass stocks and their distribution among ecosystem compartments were strongly correlated with the variability in carbon fluxes, and both were strongly controlled by climate (water availability, temperature) and stand characteristics (age, type of leaf). Gross primary production and ecosystem respiration were strongly correlated with mean annual temperature and precipitation only when precipitation and temperature were not limiting factors. Finally, our results suggest a global convergence in mean resource-use efficiencies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

LAI:

L area index (m2 m−2)

SLA:

Specific leaf area (m2 kg−1)

GPP:

Gross primary production (gC m−2 year−1)

Re:

Ecosystem respiration (gC m−2 year−1)

NEP:

Net ecosystem production (gC m−2 year−1)

TBP:

Total biomass production (gC m−2 year−1)

ABP:

Aboveground biomass production (gC m−2 year−1)

FNPP:

Foliage net primary production (gC m−2 year−1)

WNPP:

Wood net primary production (gC m−2 year−1)

BBP:

Belowground biomass production (gC m−2 year−1)

ABP %:

ABP to GPP ratio (%)

FNPP %:

FNPP to GPP ratio (%)

WNPP %:

WNPP to GPP ratio (%)

BBP %:

BBP to GPP ratio (%)

CUEe:

Carbon use efficiency at the ecosystemic level (%)

BPE:

Biomass production efficiency (%)

LUE:

Light-use efficiency (gC MJ−1)

LUE %APAR :

Light-use efficiency relative to absorbed PAR (%)

LUE %PAR :

Light-use efficiency relative to incident PAR (%)

PAR:

Photosynthetically active radiation (MJ m−2)

LUE %TRad :

Light-use efficiency relative to total incident radiation (%)

WUE:

Water-use efficiency (gC L−1)

AET:

Actual evapotranspiration (mm year−1)

PET:

Potential evapotranspiration (mm year−1)

WD:

Water deficit (%)

MAT:

Mean annual temperature (°C)

MAP:

Mean annual precipitation (mm year−1)

References

  1. Ackerly DD, Stuart SA (2009) Physiological ecology: plants. In: Levin S (ed) Princeton guide to ecology. Princeton University Press, Princeton, pp 20–26

    Google Scholar 

  2. Aranda I, Pardos M, Puértolas J et al (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27:671–677

    PubMed  Article  Google Scholar 

  3. Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manage 193:5–16. doi:10.1016/j.foreco.2004.01.019

    Article  Google Scholar 

  4. Chambers JQ, Tribuzy ES, Toledo LC et al (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:72–88. doi:10.1890/01-6012

    Article  Google Scholar 

  5. Chen JM, Thomas SC, Yin Y et al (2007) Combining remote sensing imagery and forest age inventory for biomass mapping. J Environ Manage 85:616–623

    PubMed  Article  Google Scholar 

  6. De Vries W, Solberg S, Dobbertin M et al (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage 258:1814–1823. doi:10.1016/j.foreco.2009.02.034

    Article  Google Scholar 

  7. Dixon RK, Solomon a M, Brown S, et al (1994) Carbon pools and flux of global forest ecosystems. Science (80) 263:185–90. doi: 10.1126/science.263.5144.185

    Google Scholar 

  8. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185

    Article  Google Scholar 

  9. Field C, Merino J, Mooney Ha (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–389. doi:10.1007/BF00376856

    Article  Google Scholar 

  10. Fritsch S, Machwitz M, Ehammer A et al (2012) Validation of the collection 5 MODIS FPAR product in a heterogeneous agricultural landscape in arid Uzbekistan using multitemporal RapidEye imagery. Int J Remote Sens 33:6818–6837. doi:10.1080/01431161.2012.692834

    Article  Google Scholar 

  11. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    CAS  Article  Google Scholar 

  12. Garbulsky MF, Peñuelas J, Papale D et al (2010) Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob Ecol Biogeogr 19:253–267. doi:10.1111/j.1466-8238.2009.00504.x

    Article  Google Scholar 

  13. Goetz SJ, Prince SD (1999) Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency. Adv Ecol Res 28:57–92

    CAS  Article  Google Scholar 

  14. Goulden ML, Mcmillan a MS, Winston GC et al (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Chang Biol 17:855–871. doi:10.1111/j.1365-2486.2010.02274.x

    Article  Google Scholar 

  15. Gower STG, Rankina OK, Olson RJO et al (2001) Net primary production and carbon allocation patterns. Ecol Appl 11:1395–1411

    Article  Google Scholar 

  16. Gu L, Baldocchi D, Verma SB et al (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:1–23

    Google Scholar 

  17. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  18. Holland EA, Braswell BH, Sulzman J, Lamarque J-F (2005) Nitrogen deposition onto the united states and western Europe: synthesis of observations and models. Ecol Appl 15:38–57. doi:10.1890/03-5162

    Article  Google Scholar 

  19. Huxman TE, Smith MMD, Fay PAP et al (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654. doi:10.1038/nature02597.1

    CAS  PubMed  Article  Google Scholar 

  20. IPCC (2007) Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Climate Change 2007). Cambridge Univ Press Cambridge United Kingdom New York NY USA 996

  21. Janssens Ia, Lankreijer H, Matteucci G et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–278. doi:10.1046/j.1365-2486.2001.00412.x

    Article  Google Scholar 

  22. Janssens Ia, Dieleman W, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322. doi:10.1038/ngeo844

    CAS  Article  Google Scholar 

  23. Jenkins JP, Richardson AD, Braswell BH et al (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric For Meteorol 143:64–79. doi:10.1016/j.agrformet.2006.11.008

    Article  Google Scholar 

  24. Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO 2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Chang Biol 14:2333–2348. doi:10.1111/j.1365-2486.2008.01646.x

    Article  Google Scholar 

  25. Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci 106:11635–11640

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75

    CAS  PubMed  Article  Google Scholar 

  27. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manage 95:209–228. doi:10.1016/S0378-1127(97)00026-1

    Article  Google Scholar 

  28. Law BE, Falge E, Gu L et al (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  29. Lewis SL, Lopez-Gonzalez G, Sonké B et al (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006. doi:10.1038/nature07771

    CAS  PubMed  Article  Google Scholar 

  30. Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109. doi:10.1111/j.1365-2486.2007.01420.x

    Article  Google Scholar 

  31. Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ 114:1924–1939. doi:10.1016/j.rse.2010.04.001

    Article  Google Scholar 

  32. Lusk CH, Wright I, Reich PB (2003) Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytol 160:329–336. doi:10.1046/j.1469-8137.2003.00879.x

    Article  Google Scholar 

  33. Luyssaert S, Inglima I, Jung M et al (2007) CO 2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13:2509–2537. doi:10.1111/j.1365-2486.2007.01439.x

    Article  Google Scholar 

  34. Luyssaert S, Ciais P, Piao SL et al (2010) The European carbon balance. Part 3: forests. Glob Chang Biol 16:1429–1450. doi:10.1111/j.1365-2486.2009.02056.x

    Article  Google Scholar 

  35. Magnani F, Mencuccini M, Borghetti M et al (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850. doi:10.1038/nature05847

    PubMed  Article  Google Scholar 

  36. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740. doi:10.1046/j.1365-3040.1999.00453.x

    CAS  Article  Google Scholar 

  37. Margalef R (1974) Ecología trófica. In: Margalef R (ed) Ecología, Ediciones. Barcelona, pp 435–472

  38. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  39. Nemani RR, Keeling CD, Hashimoto H, et al. (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(80):1560–3. doi:10.1126/science.1082750

    Google Scholar 

  40. Pan Y, Birdsey RA, Fang J, et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(80):988–93. doi:10.1126/science.1201609

    Google Scholar 

  41. Pausas JG (1999) Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecol 140:27–39

    Article  Google Scholar 

  42. Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608. doi:10.1111/j.1466-8238.2010.00608.x

    Article  Google Scholar 

  43. Peñuelas J, Sardans J, Rivas-ubach A, Janssens Ia (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Chang Biol 18:3–6. doi:10.1111/j.1365-2486.2011.02568.x

    Article  Google Scholar 

  44. Poorter H, Niklas KJ, Reich PB et al (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. doi:10.1111/j.1469-8137.2011.03952.x

    CAS  PubMed  Article  Google Scholar 

  45. Robinson D (2004) Scaling the depths: below-ground allocation in plants, forests and biomes. Funct Ecol 18(2):290–295

    Article  Google Scholar 

  46. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  47. Shan J, Morris LA, Hendrick RL (2002) The effects of management on soil and plant carbon sequestration in slash pine plantations. J Appl Ecol 38:932–941. doi:10.1046/j.1365-2664.2001.00648.x

    Article  Google Scholar 

  48. Stephens BB, Gurney KR, Tans PP, et al (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316(80):1732–5. doi:10.1126/science.1137004

    Google Scholar 

  49. Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870

    Article  Google Scholar 

  50. Troch PA, Martinez GF, Pauwels VRN et al (2009) Climate and vegetation water use efficiency at catchment scales. Hydrol Process 2414:2409–2414. doi:10.1002/hyp

    Article  Google Scholar 

  51. Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865. doi:10.1038/35009084

    CAS  PubMed  Article  Google Scholar 

  52. Vicca S, Luyssaert S, Peñuelas J et al (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15:520–526. doi:10.1111/j.1461-0248.2012.01775.x

    CAS  PubMed  Article  Google Scholar 

  53. Wang K-Y, Kellomaki S, Li C, Zha T (2003) Light and water-use efficiencies of pine shoots exposed to elevated carbon dioxide and temperature. Ann Bot 92:53–64. doi:10.1093/aob/mcg110

    PubMed  Article  Google Scholar 

  54. Yu G, Song X, Wang Q et al (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177:927–937. doi:10.1111/j.1469-8137.2007.02316.x

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Government projects CGC2010-17172 and Consolider Ingenio Montes (CSD2008-00040), by the Catalan Government Project SGR 2009-458 and by the Catalan Government FI-2013 grant. S. Vicca and M. Campioli are postdoctoral fellows of the Research Foundation—Flanders (FWO). S. Luyssaert was funded through ERC starting grant 242564 and received additional funding through FWO Vlaanderen. We appreciated the financial support of the GHG Europe project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos Fernández-Martínez.

Additional information

Communicated by A. Geßler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1911 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández-Martínez, M., Vicca, S., Janssens, I.A. et al. Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems. Trees 28, 597–611 (2014). https://doi.org/10.1007/s00468-013-0975-9

Download citation

Keywords

  • Carbon cycle
  • Budget
  • Partitioning
  • Allocation
  • Climate
  • LUE
  • WUE
  • Nitrogen deposition