Skip to main content
Log in

Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The radial, axial and inter-specific variations in concentrations and contents of non-structural carbohydrates (NSC) in stems were investigated for 12 Chinese temperate tree species. These species had contrasting leaf phenology (evergreen and deciduous) and wood types (non-, ring- and diffuse-porous wood). For each species, we sampled bark (periderm and phloem), outer wood (light-colored) and inner wood (dark-colored) at four heights along the stem (stump, breast height, crown base and mid-crown). Concentrations of total NSC (TNC, sum of sugars and starch), sugars and starch were much higher in bark than those in wood. On average, contents of sugars and starch accounted for 48 and 52 % of the TNC, respectively, and contents of TNC in bark, outer wood, and inner wood accounted for 34, 38, and 28 % of the stem total, respectively. Bark was the major pool of sugars in the stem (accounting for 50 % of the stem total on average), while outer wood was the major pool of starch (41 %). The concentration of sugars varied axially for all the conifers but did not for the broadleaved species. Mean concentrations of TNC, sugars and starch in stem varied by more than twofold among the species. However, there were no significant differences in these values for the species groups with different leaf phenology or wood types. Ignoring the radial, axial and inter-specific variations in NSC in stem would introduce large bias in estimating NSC storage at tree or ecosystem levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bamber RK (1976) Heartwood, its function and formation. Wood Sci Technol 10(1):1–8. doi:10.1007/BF00376379

    Article  Google Scholar 

  • Bansal S, Germino MJ (2009) Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions. Tree Physiol 29(4):559–568. doi:10.1093/treephys/tpn045

    Article  PubMed  Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210. doi:10.1093/treephys/22.17.1201

    Article  CAS  PubMed  Google Scholar 

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157(3):605–615. doi:10.1046/j.1469-8137.2003.00681.x

    Article  Google Scholar 

  • Bazot S, Barthes L, Blanot D, Fresneau C (2013) Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees Struct Funct 27(4):1023–1034. doi:10.1007/s00468-013-0853-5

    Article  CAS  Google Scholar 

  • Bustan A, Avni A, Lavee S, Zipori I, Yeselson Y, Schaffer AA, Riov J, Dag A (2011) Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees. Tree Physiol 31(5):519–530. doi:10.1093/treephys/tpr036

    Article  CAS  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44(10):1627–1629. doi:10.1093/jxb/44.10.1627

    Article  CAS  Google Scholar 

  • Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clément A, Guilliot A, Améglio T, Thaler P (2009) Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiol 29(8):1021–1031. doi:10.1093/treephys/tpp043

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447. doi:10.1146/annurev.es.21.110190.002231

    Article  Google Scholar 

  • Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24(10):1129–1136. doi:10.1093/treephys/24.10.1129

    Article  CAS  PubMed  Google Scholar 

  • Dong LH, Li FR, Jia WW, Liu FX, Wang HZ (2011) Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China. Chin J Appl Ecol 22(10):2653–2661

    Google Scholar 

  • Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, Högberg P, Maillard P, Dannoura M, Gérant D, Buchmann N (2012) Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol 32(6):776–798. doi:10.1093/treephys/tps057

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Höll W (1992) Food reserves of scots pine (Pinus sylvestris L.) II. Seasonal changes and radial distribution of carbohydrate and fat reserves in pine wood. Trees Struct Funct 6(3):147–155. doi:10.1007/BF00202430

  • Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008) Carbon allocation in fruit trees: from theory to modelling. Trees Struct Funct 22(3):269–282. doi:10.1007/s00468-007-0176-5

    Article  Google Scholar 

  • Genet H, Bréda N, Dufrêne E (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30(2):177–192. doi:10.1093/treephys/tpp105

    Article  CAS  PubMed  Google Scholar 

  • Gérard B, Bréda N (2012) Radial distribution of carbohydrate reserves in the trunk of declining European beech trees (Fagus sylvatica L.). Ann For Sci. doi:10.1007/s13595-012-0240-1

  • Gholz HL, Cropper WP Jr (1991) Carbohydrate dynamics in mature Pinus elliottii var. elliottii trees. Can J For Res 21(12):1742–1747. doi:10.1139/x91-240

    Article  CAS  Google Scholar 

  • Gough CM, Flower CE, Vogel CS, Dragoni D, Curtis PS (2009) Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agric For Meteorol 149(9):1531–1540. doi:10.1016/j.agrformet.2009.04.006

    Article  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26(7):1067–1081. doi:10.1046/j.0016-8025.2003.01032.x

    Article  CAS  Google Scholar 

  • Hu HQ, Guo FT (2008) Estimation of total carbon-containing gas emission from main tree species in Daxingan Mountains. Chin J Appl Ecol 19(9):1884–1890

    CAS  Google Scholar 

  • IAWA (1964) Multilingual glossary of terms used in wood anatomy. Verlagsanstalt buchdruckerei konkordia, Winterthur

    Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91(1):4–17. doi:10.1046/j.1365-2745.2003.00742.x

    Article  Google Scholar 

  • Kozlowski TT (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58(2):107–222. doi:10.1007/BF02858600

    Article  Google Scholar 

  • Landhäusser SM, Lieffers VJ (2003) Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees Struct Funct 17(6):471–476. doi:10.1007/s00468-003-0263-1

    Article  Google Scholar 

  • Le Roux X, Lacointe A, Escobar-Gutiérrez A, Le Dizès S (2001) Carbon-based models of individual tree growth: a critical appraisal. Ann For Sci 58(5):469–506. doi:10.1051/forest:2001140

    Article  Google Scholar 

  • Ludovici KH, Allen HL, Albaugh TJ, Dougherty PM (2002) The influence of nutrient and water availability on carbohydrate storage in loblolly pine. For Ecol Manag 159(3):261–270. doi:10.1016/S0378-1127(01)00439-X

    Article  Google Scholar 

  • Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A (2006) Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Glob Change Biol 12(2):272–283. doi:10.1111/j.1365-2486.2005.01091.x

    Article  Google Scholar 

  • Magel E, Jay-Allemand C, Ziegler H (1994) Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees Struct Funct 8(4):165–171. doi:10.1007/BF00196843

    Google Scholar 

  • Magel E, Einig W, Hampp R (2000) Carbohydrates in trees. In: Gupta AK, Kaur N (eds) Carbohydrate reserves in plants. Elsevier Science, Amsterdam, pp 317–336

    Chapter  Google Scholar 

  • Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32(8):1033–1045. doi:10.1093/treephys/tps052

    Article  PubMed  Google Scholar 

  • Mu LQ, Zhang J, Liu XJ, Wu SN, Yang GC (1995) Study on the tree layer biomass of Picea koraiensis artificial forests. Bull Bot Res 15(4):551–557

    Google Scholar 

  • Myers JA, Kitajima K (2007) Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J Ecol 95(2):383–395. doi:10.1111/j.1365-2745.2006.01207.x

    Article  CAS  Google Scholar 

  • Newell EA, Mulkey SS, Wright SJ (2002) Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131(3):333–342. doi:10.1007/s00442-002-0888-6

    Article  Google Scholar 

  • Palacio S, Maestro M, Montserrat-Martí G (2007) Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ Exp Bot 59(1):34–42. doi:10.1016/j.envexpbot.2005.10.003

    Article  CAS  Google Scholar 

  • Palacio S, Paterson E, Sim A, Hester AJ, Millard P (2011) Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiol 31(2):150–159. doi:10.1093/treephys/tpq110

    Article  CAS  PubMed  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, Burlington

    Google Scholar 

  • Piispanen R, Saranpää P (2001) Variation of non-structural carbohydrates in silver birch (Betula pendula Roth) wood. Trees Struct Funct 15(7):444–451. doi:10.1007/s004680100125

    Article  CAS  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523. doi:10.1104/pp.010816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pruyn ML (2002) Patterns of stem respiration within tree, with age, and among species in Pacific Northwest Trees. Dissertation, Oregon State University

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197(3):850–861. doi:10.1111/nph.12042

    Article  CAS  PubMed  Google Scholar 

  • Rocha AV (2013) Tracking carbon within the trees. New Phytol 197(3):685–686. doi:10.1111/nph.12095

    Article  PubMed  Google Scholar 

  • Ryan MG (2011) Tree responses to drought. Tree Physiol 31(3):237–239. doi:10.1093/treephys/tpr022

    Article  PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32(6):764–775. doi:10.1093/treephys/tpr143

    Article  CAS  PubMed  Google Scholar 

  • Saranpää P, Höll W (1989) Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees Struct Funct 3(3):138–143. doi:10.1007/BF00226648

  • Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P, Gohet E, Musigamart N, Clément A, Améglio T, Thaler P (2007) Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiol 27(6):881–889. doi:10.1093/treephys/27.6.881

    Article  CAS  PubMed  Google Scholar 

  • Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Amsterdam, pp 457–475

    Chapter  Google Scholar 

  • Wang CK (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manag 222(1–3):9–16. doi:10.1016/j.foreco.2005.10.074

    Article  Google Scholar 

  • Wang XC, Wang CK, Zhang QZ, Quan XK (2010) Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann For Sci 67(4): Article number 410. doi:10.1051/forest/2009131

  • Wang CK, Han Y, Chen JQ, Wang XC, Zhang QZ, Bond-Lamberty B (2013) Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles. Agric For Meteorol 177:83–92. doi:10.1016/j.agrformet.2013.04.008

    Article  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195(2):285–289. doi:10.1111/j.1469-8137.2012.04180.x

    Article  CAS  PubMed  Google Scholar 

  • Wong BL, Baggett KL, Rye AH (2003) Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can J Bot 81(8):780–788. doi:10.1139/b03-079

    Article  CAS  Google Scholar 

  • Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143(1):11–24. doi:10.1007/s00442-004-1773-2

    Article  PubMed  Google Scholar 

  • Yin SD (2004) Compare study on nutrient ecology of Pinus koraiensis and Larix olgensis plantation ecosystems. Dissertation, Northeast Forestry University

  • Zhan HZ, Liu CZ, Liu JC (1990) A study on biomass and nutrient content of hardwood-Korean pine forest. Sci Silvae Sin 26(1):80–85

    Google Scholar 

  • Zhang QZ, Wang CK (2010) Carbon density and distribution of six Chinese temperate forests. Sci China Life Sci 53(7):831–840. doi:10.1007/s11427-010-4026-0

    Article  CAS  PubMed  Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn 4:1–63

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2011BAD37B01), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1054), and the National Natural Science Funds for Distinguished Young Scientists (No. 30625010) to C. K. Wang. We are grateful to Dr. Günter Hoch for his valuable suggestion on the experimental design and three anonymous reviewers for their constructive comments. The Maoershan Forest Ecosystem Research Station provided field logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuankuan Wang.

Additional information

Communicated by T. Koike.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, C. & Wang, X. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees 28, 77–89 (2014). https://doi.org/10.1007/s00468-013-0931-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0931-8

Keywords

Navigation