, Volume 27, Issue 6, pp 1609–1619 | Cite as

Growth, regeneration and shade tolerance of the Wild Service Tree (Sorbus torminalis (L.) Crantz) in aged oak coppice forests

  • Patrick Pyttel
  • Jörg Kunz
  • Jürgen Bauhus
Original Paper


Sorbus torminalis L. (Crantz) is a rare species in Central European forests with very limited quantitative information on its regeneration and growth dynamics. Since coppicing is no longer practiced in the most parts of Central Europe, it is unclear whether S. torminalis, which has usually a shorter end height than companion species, can persist in high forest systems. Here, we quantified species frequency on three 1 ha sample plots of former oak coppice forest. To determine whether S. torminalis regenerated continuously and how it might compete with oaks, the age of 80 trees was determined, and diameter and height growth were reconstructed for the 20 largest trees by stem analysis. To assess its shade tolerance, photosynthesis was measured for leaves located in high and low light conditions. Dendrochronological data demonstrated that, over the last 80 years, continuous recruitment of S. torminalis occurred. Growth patterns and photosynthesis measurements suggest that S. torminalis is a highly shade-tolerant species. We conclude that abandonment of coppicing in these forests does not threaten the status of S. torminalis, which can persist beneath the canopy of oaks.


Coppice Age structure Growth Light ecology Sorbus torminalis Wild Service Tree 



This work has been carried out as part of a larger project funded by Deutsche Bundesstiftung Umwelt (DBU, Project Number 25954-33/0). The authors thank Herbert Kraft, Ralf Dübbers and other members of the Bundesforstbetrieb Rhein-Mosel (Baumholder) for financial and technical assistance during fieldwork and research site establishment. Furthermore, we thank Willy Tegel and Tiemo Kahl for valuable advice during sample preparation and year ring identification. We are grateful to the Chair of Forest Botany, Albert-Ludwigs-University Freiburg, for their technical support with the microscopic analysis of year rings.


  1. Bamberger U (1990) Ergebnisse des Elsbeer-Herkunftsversuchs im Kaiserstuhl. AFZ-Der Wald 45:817–818Google Scholar
  2. Bazzaz FA, Carlson RW (1982) Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54:313–316CrossRefGoogle Scholar
  3. Bednorz L (2007) Conservation of genetic resources of Sorbus torminalis in Poland. Dendrobiology 58:3–7Google Scholar
  4. Bednorz L, Urbaniak A (2005) Phenology of the wild service tree (Sorbus torminalis (L.) Crantz) in Poznań and Wielkopolski National Park. Dendrobiology 53:3–10Google Scholar
  5. Belletti P, Monteleone I, Ferrazzini D (2008) A population genetic study in a scattered forest species, wild service tree [Sorbus torminalis (L.) Crantz], using RAPD markers. Eur J For Res 127:103–114CrossRefGoogle Scholar
  6. Bindseil W (1936) Vergeßt die Elsbeere nicht! Der Deutsche Forstwirt 31:391–392Google Scholar
  7. BMELV (Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz) (2004) Die zweite Bundeswaldinventur – BWI 2. Das Wichtigste in Kürze. Bonn.,0/31.html. Accessed 9 November 2010
  8. Demesure B, Le Guerroué B, Lucchi G, Prar D, Petit R-J (2000) Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Ann For Sci 57:63–71CrossRefGoogle Scholar
  9. Demesure-Musch B, Oddou-Muratorio S (2004) EUFROGEN Technical guidelines for genetic conservation and use for wild service tree (Sorbus torminalis). International Plant Genetic Resources Institute, RomeGoogle Scholar
  10. Drapier N (1993) E’ cologie de l’ Alisier torminal Sorbus torminalis (L.) Crantz. Rev For Fr 65:229–242CrossRefGoogle Scholar
  11. Elflein T, Wörle A, Ammer C (2008) Zur Reaktionsfähigkeit der Elsbeere (Sorbus torminalis [L.] Crantz) auf späte Kronenumlichtung. Forstarchiv 79:155–163Google Scholar
  12. Ellenberg H (1988) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  13. Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a natural stand. New Phytol 125:381–389CrossRefGoogle Scholar
  14. Epron D, Dreyer E, Brèda N (1992) Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant Cell Environ 15:809–820CrossRefGoogle Scholar
  15. Ewald C, Zander M, Jander A (1994) Die Elsbeere (Sorbus torminalis [L.] Crantz) in Brandenburg. Der Wald 44:232–235Google Scholar
  16. Franke A, Dagenbach H, Hauff U (1990) Erhaltung und Nachzucht seltener einheimischer Baumarten in Baden-Württemberg. AFZ-Der Wald 45:166–168Google Scholar
  17. Fritts HC (1971) Dendroclimatology and dendroecology. Quat Res 1:419–449CrossRefGoogle Scholar
  18. Geb M, Schmidt W, Meyer P (2004) Das Mittelwaldprojekt Liebenburg—Entwicklung der Bestandesstruktur. Forst Holz 59:567–573Google Scholar
  19. Givnish TJ (1988) Adaption to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92CrossRefGoogle Scholar
  20. Hemery GE, Clark JR, Aldinger E, Claessens H, Malvolti ME, O’Connor E, Raftoyannis Y, Savill PS, Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83:65–81CrossRefGoogle Scholar
  21. Heß R (1905) Die Eigenschaften und das forstliche Verhalten der wichtigeren in Deutschland vorkommenden Holzarten. Ein Leitfaden für Studierende, Praktiker und Waldbesitzer. Parey, BerlinGoogle Scholar
  22. Hochbichler E (2003) Die Elsbeere (Sorbus torminalis Crantz) im Weinviertel (Niederösterreich). Forst Holz 58:647–653Google Scholar
  23. Hoebee SE, Menn C, Rotach P, Finkeldey R, Holderegger R (2006) Spatial genetic structure of Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. For Ecol Manage 226:1–8CrossRefGoogle Scholar
  24. Hölscher D (2004) Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic Appl Ecol 5:163–172CrossRefGoogle Scholar
  25. Huff MH (1995) Forest age structure and development following wildfires in the western Olympic mountains, Washington. Ecol Appl 5:471–483CrossRefGoogle Scholar
  26. Kahle M (2004) Untersuchungen zum Wachstum der Elsbeere (Sorbus torminalis [L.] Crantz) am Beispiel einiger Mischbestände in Nordrhein-Westfalen. Landesanstalt für Ökologie, Bodenordnung und Forsten NRW, RecklinghausenGoogle Scholar
  27. Kausch-Blecken von Schmeling W (1994) Förderung von Elsbeere und Speierling mit Diplomarbeiten. AFZ-Der Wald 49:1449–1450Google Scholar
  28. Kazda M, Wagner C, Pichler M, Hager H (1998) Potenzielle Lichtausnützung von Quercus petraea, Fagus sylvatica und Acer pseudoplatanus im Jahr des Voranbaus. Allg Forst- Jagdzeit 169:157–163Google Scholar
  29. Kazda M, Salzer J, Reiter I (2000) Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiol 20:1029–1037PubMedCrossRefGoogle Scholar
  30. Klein L (1910) Unsere Waldbäume, Sträucher und Zwergholzgewächse. Carl Winter’s Universitätsbuchhandlung, HeidelbergGoogle Scholar
  31. Kleinschmit J (1998) Erhaltung und Nutzung wertvoller Edellaubbaumarten. Forst Holz 53:515–519Google Scholar
  32. Kotar M (2001) Höhenwachstum der Elsbeere und des Speierlings. Corminaria 16:19–22Google Scholar
  33. Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Kindworth’s Verlag, HannoverGoogle Scholar
  34. Leder B, Kahle M (1998) Untersuchungen zum Wachstum und Entwicklungsgang der Elsbeere in Mischbeständen Nordrhein-Westfalens. In: LÖBF Jahresbericht 1998, pp 124–128Google Scholar
  35. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46CrossRefGoogle Scholar
  36. LFV (Landesforstverwaltung Rheinland-Pfalz) (1987) Walbaurichtlinien für die Wälder von Rheinland-Pfalz. 1. Teil Bericht der Forstdirektionen Koblenz und Trier. Mitteilungen aus der Forsteinrichtung und WaldbauGoogle Scholar
  37. Lloyd EG (1977) The wild service tree, Sorbus torminalis in Epping Forest. Lond Nat 56:22–28Google Scholar
  38. LÖBF (Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen) (2004) Merkblatt zur Artenförderung – ElsbeereGoogle Scholar
  39. Lommen PW, Smith SK, Yocum CS, Gates DM (1975) Photosynthetic model. In: Gates DM, Schmerl RB (eds) Perspectives of biophysical ecology. Springer, New York, pp 33–43CrossRefGoogle Scholar
  40. Lüttge U (1985) Epiphyten: Evolution und Ökophysiologie. Naturwissenschaften 72:557–566CrossRefGoogle Scholar
  41. Maurer WD (2007) Allgemeines zur Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz (FAWF) in Trippstadt. In: Maurer WD (ed) Förderkreis Speierling. Tagungs- und Exkursionsführer zur Jahrestagung 2007. Trippstadt, pp 5–12Google Scholar
  42. Morecroft MD, Roberts JM (1999) Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and Sycamore (Acer pseudoplatanus) trees throughout the growing season. Funct Ecol 13:332–342CrossRefGoogle Scholar
  43. Müller S, Ammer C, Nüsslein S (2000) Analyses of stand structure as a tool for silvicultural decisions—a case study in a Quercus petraea—Sorbus torminalis stand. Forstwiss. 119:32–42CrossRefGoogle Scholar
  44. Müller-Kroehling S, Franz C (1999) Elsbeere und Speierling in Bayern. Bemühungen um ihren Erhalt, Anbau, Waldbau und Holzverwertung. Corminaria 12:3–8Google Scholar
  45. Müller-Starck G (2000) Genetische Variation von Speierling und Elsbeere. AFZ-Der Wald 55:226–227Google Scholar
  46. Nagel J, Athari S (1982) Stammanalyse und ihre Durchführung. Allg Forst- Jagdztg 153:179–182Google Scholar
  47. Oddou-Muratorio S, Klein E, Demesure-Musch B, Austerlitz F (2006) Real time patterns of pollen flow in the wild-service tree, Sorbus torminalis (Rosaceae). III. Mating patterns and the ecological maternal neighborhood. Am J Bot 93:1650–1659PubMedCrossRefGoogle Scholar
  48. Paganová V (2007) Ecology and distribution of Sorbus torminalis (L.) Crantz. in Slovakia. Hortic Sci 34:138–151Google Scholar
  49. Paganová V (2008) Ecological requirements of wild service tree (Sorbus torminalis (L.) Crantz) and service tree (Sorbus domestica L.) in relation with their utilization in forestry and landscape. J For Sci 54:216–226Google Scholar
  50. Peterken GF (1996) Natural woodland. Cambridge University Press, CambridgeGoogle Scholar
  51. Pfeil W (1860) Die deutsche Holzzucht. Baumgärtner’s Buchhandlung, LeipzigGoogle Scholar
  52. Pietzarka U, Lehmann M, Roloff A (2009) Sorbus torminalis (L.) Crantz. In: Roloff A, Weisgerber H, Lang U, Stimm B (ed) Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie. Wiley-VCH Verlag, Weinheim. 49. Complementary-consignment 6/08, 1–16 ppGoogle Scholar
  53. Prudič Z (1997) Wuchsleistung und Konkurrenzbeziehungen von Elsbeere und Speierling. Corminaria 7:9–12Google Scholar
  54. Rasmussen KK, Kollmann J (2004) Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis. Acta Oecol 25:211–218CrossRefGoogle Scholar
  55. Rich TCG, Houston L, Robertson A, Proctor MCF (2010) Whitebeams, rowans and service trees of Britain and Ireland. Botanical Society of the British Isles, LondonGoogle Scholar
  56. Röhrig E (1972) Die Nachzucht der Elsbeere (Sorbus torminalis L.). Forst- Holzwirt 27:401–403Google Scholar
  57. Roloff A (2010) Elsbeere 2011. Accessed 4 November 2010
  58. Roper E (1993) The distribution of the wild service tree, Sorbus torminalis Crantz, in the British Isles. Watsonia 19:209–229Google Scholar
  59. Rozas V (2003) Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecol 167:193–212CrossRefGoogle Scholar
  60. Schmitt P (2000) Elsbeeren und Speierlinge. In: LÖBF Jahresbericht 2000, pp 150–158Google Scholar
  61. Schneider M (2004) Von der zivilen Kulturlandschaft zur militärischen Dienstleistungslandschaft - Das Beispiel Truppenübungsplatz Baumholder. Dissertation, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  62. Schrötter H (1992) Förderung der Elsbeere. Der Wald 42:386–387Google Scholar
  63. Schrötter H (2001) Vogelkirsche, Spitzahorn und Elsbeere: Drei wertvolle Baumarten in Mecklenburg-Vorpommern im Abseits. Forst Holz 56:188–196Google Scholar
  64. Schüte G (2001) Jugendwachstum und Schattentoleranz vegetativer Verjüngungen der Elsbeere (Sorbus torminalis Crantz). Forst Holz 56:11–15Google Scholar
  65. Schüte G, Beck AO (1996) Entwicklung einer Verjüngung mit Elsbeere und Kirsche von 1976–1995. Forst Holz 51:627–628Google Scholar
  66. Schweingruber FH (1996) Tree rings and environment dendroecology. Paul Haupt, BernGoogle Scholar
  67. Sommer A (2003) Elsbeeren im Hessischen Forstamt Homberg/Ohm. AFZ-Der Wald 58:572–574Google Scholar
  68. Spiecker H (2006) Minority tree species: a challenge for multi-purpose forestry. In: Diaci J (ed) Nature-based forestry in Central Europe: alternatives to industrial forestry and strict preservation. University of Ljubljana, Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, Ljubljana, pp 47–59Google Scholar
  69. Telewski FW, Lynch AM (1991) Measuring growth and development of stems. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 503–555Google Scholar
  70. Terborg O (1998) Die Kohlenstoffassimilation von Rotbuchen und Traubeneichen in einem Mischbestand in der Lüneburger Heide und deren Bedeutung für die interspezifische Konkurrenz. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  71. Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Engel VC, Griffin KL (2002) Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Oecologia 130:515–524CrossRefGoogle Scholar
  72. Uthoff P (2002) Achtung, Sorbus! AFZ-Der Wald 57:585Google Scholar
  73. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Syst 39:237–257CrossRefGoogle Scholar
  74. von Drais FHG (1807) Versuch eines Lehrbuchs der Forstwissenschaft vorzüglich für ausübende Forstbediente. Heyer, Gießen, DarmstadtGoogle Scholar
  75. Wilhelm GJ (1998) Beobachtungen zu Wildbirne. AFZ-Der Wald 53:856–859Google Scholar
  76. Zeitlinger HJ (1990) Die Elsbeere. Österr Forstztg 12:35–37Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chair of Silviculture, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations