Skip to main content

Advertisement

Log in

Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

While theoretical allometric models postulate universal scaling exponents, empirical relationships between tree dimensions show marked variability that reflects changes in the biomass allocation pattern. As growth of the various tree compartments may be controlled by different functions, it is hypothesized that they may respond differently to factors of variation, resulting in variable tree morphologies and potentially in trade-offs between allometric relationships. We explore the variability of tree stem and crown allometries using a dataset of 1,729 trees located in an undisturbed wet evergreen forest of the Western Ghats, India. We specifically test whether species adult stature, terrain slope, tree size and crown light exposure affect the relationships between stem diameter and stem height (stem allometry), and between stem diameter and crown width, crown area and crown volume (crown allometries). Results show that both stem and crown allometries are subject to variations in relation to both endogenous (tree size, species adult stature) and exogenous (terrain slope, crown light exposure) factors. Stem allometry appears to be more affected by these factors than are crown allometries, including the stem diameter–crown volume relationship, which proved to be particularly stable. Our results support the idea that height is a prevailing adjustment factor for a tree facing variable growth (notably light) conditions, while stem diameter–crown volume allometry responds more to internal metabolic constraints. We ultimately discuss the various sources of variability in the stem and crown allometries of tropical trees that likely play an important role in forest community dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiba SI, Kohyama T (1997) Crown architecture and life-history traits of 14 tree species in a warm-temperate rain forest: significance of spatial heterogeneity. J Ecol 85:611–624

    Article  Google Scholar 

  • Alder D, Synnott TJ (1992) Permanent sample plot techniques for mixed tropical forest. Tropical Forestry Papers 25, Oxford Forestry Institute, Oxford

  • Anten NPR, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260

    Article  PubMed  Google Scholar 

  • Ashton PS, Hall P (1992) Comparisons of structure among mixed dipterocarp forests of north-western Borneo. J Ecol 80:459–481

    Article  Google Scholar 

  • Banin L, Feldpausch TR, Phillips OL et al (2012) What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1171–1190

    Article  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Bohlman S, O’Brien S (2006) Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol 22:123–136

    Article  Google Scholar 

  • Bohlman S, Pacala S (2012) A forest structure model that determines crown layers and partitions growth and mortality rates for landscape-scale applications of tropical forests. J Ecol 100:508–518

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Clark DB, Olivas PC, Oberbauer SF, Clark DA, Ryan MG (2008) First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity. Ecol Lett 11(2):163–172

    Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40

    Article  Google Scholar 

  • Coomes DA, Allen RB (2009) Testing the metabolic scaling theory of tree growth. J Ecol 97:1369–1373

    Article  Google Scholar 

  • Coomes DA, Duncan RP, Allen RB, Truscott J (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989

    Article  Google Scholar 

  • Couteron P, Pélissier R, Nicolini EA, Paget D (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128

    Article  Google Scholar 

  • Cusset G (1980) Sur les paramètres intervenant dans la croissance des arbres: la relation hauteur-diamètre de l’axe primaire aérien. Candollea 35:231–255

    Google Scholar 

  • Davies RB (1987) Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74:33–43

    Google Scholar 

  • Falster DS, Westoby M (2005) Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J Ecol 9:521–535

    Article  Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Ferry B, Morneau F, Bontemps J, Blanc L, Freycon V (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–116

    Article  Google Scholar 

  • Fournier M, Stokes A, Coutand C, Fourcaud T, Moulia B (2006) Tree biomechanics and growth strategies in the context of forest functional ecology. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, Boca Raton, pp 1–33

    Chapter  Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zogolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Gayon J (2000) History of the concept of allometry. Am Zool 40:748–758

    Article  Google Scholar 

  • Gilmore DW (2001) Equations to describe crown allometry of Larix require local validation. For Ecol Manag 148:109–116

    Article  Google Scholar 

  • Gimaret-Carpentier C, Pélissier R, Pascal J-P, Houllier F (1998) Sampling strategies for the assessment of tree species diversity. J Veg Sci 9:161–172

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Harja D, Vincent G, Mulia R, van Noordwijk M (2012) Tree shape plasticity in relation to crown exposure. Trees 26:1275–1285

    Article  Google Scholar 

  • Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE (2011) The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manag 261:1820–1832

    Article  Google Scholar 

  • Henry HAL, Aarssen LW (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2:89–97

    Article  Google Scholar 

  • Iida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Funct Ecol 25:1260–1268

    Article  Google Scholar 

  • Iida Y, Poorter L, Sterck FJ, Kassim AR, Kubo T, Potts MD, Kohyama TS (2012) Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Funct Ecol 26:274–282

    Article  Google Scholar 

  • King DA (1990) Allometry of saplings and understorey trees of a Panamanian forest. Funct Ecol 4:27–32

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA, Davies KF, Nur Supardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • Kohyama T (1987) Significance of architecture and allometry in saplings. Funct Ecol 1:399–404

    Article  Google Scholar 

  • Kohyama T (1993) Size-structured tree population in gap-dynamic forest—the forest architecture hypothesis for the stable coexistence of species. J Ecol 81:131–143

    Article  Google Scholar 

  • Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T (2003) Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. J Ecol 91:797–806

    Article  Google Scholar 

  • Lang AC, Härdtle W, Bruelheide H, Geißler C, Nadrowski K, Schuldt A, Yu M, von Oheimb G (2010) Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. For Ecol Manag 260:1708–1715

    Article  Google Scholar 

  • Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028

    Article  Google Scholar 

  • Loffeier ME (1989) Sylviculture et sylvigenese en foret sempervirente du Coorg (sud-ouest de l`Inde). Travaux de la section scientifique et technique, 26. French Institute of Pondicherry, India

  • Losos E, Leigh EG Jr (2004) Tropical forest diversity and dynamism—finding from a large-scale plot network. The University of Chicago Press, Chicago

    Google Scholar 

  • Mascaro J, Asner GP, Muller-Landau HC, van Breugel M, Hall J, Dahlin K (2010) Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosci Discuss 7:8817–8852

    Article  Google Scholar 

  • Moravie M-A, Durand M, Houllier F (1999) Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). For Ecol Manag 117:221–240

    Article  Google Scholar 

  • Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  PubMed  Google Scholar 

  • Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

  • Muller-Landau HC, Condit R, Chave J et al (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588

    Article  PubMed  Google Scholar 

  • Nogueira EM, Nelson BW, Fearnside PM, França MB, de Oliveira ACA (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manag 255:2963–2972

    Article  Google Scholar 

  • Oldeman RAA (1974) L’architecture de la forêt guyanaise. Mémoires ORSTOM 73, Paris

  • Osada N, Tateno R, Hyodo F, Takeda H (2004) Changes in crown architecture with tree height in two deciduous tree species: developmental constraints or plastic response to the competition for light? For Ecol Manag 188:337–347

    Article  Google Scholar 

  • Paget D (1999) Etude de la diversité spatiale des écosystèmes forestiers guyanais. Réflexion méthodologique et application. PhD dissertation, Ecole Nationale de Génie Rural des Eaux et Forêts, Nancy, France

  • Pascal J-P (1984) Les forêts denses humides sempervirentes des Ghâts occidentaux de l’Inde : écologie, structure, floristique, succession. Travaux de la Section Scientifique et Technique 20, Institut Français de Pondichéry, Inde

  • Pascal J-P, Pélissier R (1996) Structure and floristic composition of a tropical evergreen forest in south-west India. J Trop Ecol 12:191–214

    Article  Google Scholar 

  • Pélissier R (1997) Hétérogénéité spatiale et dynamique d’une forêt dense humide dans les Ghâts occidentaux de l’Inde. Publications du Département d’Ecologie 37. Institut Français de Pondichéry, Inde

  • Pélissier R (1998) Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest. J Trop Ecol 14:1–16

    Article  Google Scholar 

  • Pélissier R, Pascal J-P, Ayyappan N, Ramesh BR, Aravajy S, Ramalingam SR (2011) Twenty years tree demography in an undisturbed dipterocarp Permanent Sample Plot at Uppangala, Western Ghats of India—Data Paper. Ecology 92:1376

    Article  Google Scholar 

  • Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P (2012) Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol Appl 22:993–1003

    Article  PubMed  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2005) Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. J Ecol 93:256–267

    Article  Google Scholar 

  • Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649

    Article  PubMed  Google Scholar 

  • Proisy C, Barbier N, Guéroult M, Pélissier R, Gastellu-Etchegorry J-P, Couteron P (2012) Biomass prediction in tropical forests: the canopy grain approach. In: Fatoyinbo T (ed) Remote sensing of biomass: principles and applications. Book 1, Intech Open Access Publisher, Croatia, pp 59–76

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ramesh BR, Pascal J-P, Nouguier C (1997) Atlas of endemics of the Western Ghats (India): Distribution of tree species in the evergreen and semi-evergreen forest. Publications du Département d’Ecologie 38, Institut Français de Pondichéry, Inde

  • Robert A (2001) Modélisation de l’effet de la topographie sur la dynamique et la structure de peuplements forestiers hétérogènes. PhD dissertation, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard, Lyon, France

  • Robert A (2003) Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forests. Ecol Model 167:287–303

    Article  Google Scholar 

  • Robert A, Moravie M-A (2003) Topographic variation and stand heterogeneity in a wet evergreen forest of India. J Trop Ecol 19:697–707

    Article  Google Scholar 

  • Ruger N, Berger U, Hubbell SP, Vieilledent G, Condit R (2011) Growth strategies of tropical tree species: disentangling light and size effects. Plos One 6:e25330

    Article  PubMed  Google Scholar 

  • Russell MB, Weiskittel AR (2011) Maximum and largest crown width equations for 15 tree species in Maine. North J Appl For 28:84–91

    Google Scholar 

  • Russo SE, Wiser SK, Coomes DA (2007) Growth–size scaling relationships of woody plant species differ from predictions of the metabolic ecology model. Ecol Lett 10:889–901

    Article  PubMed  Google Scholar 

  • Silveira AP, Martins FR, Araújo FS (2012) Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga. Acta Oecol 43:126–133

    Article  Google Scholar 

  • Sterck FJ, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266–272

    Article  PubMed  CAS  Google Scholar 

  • Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13

    Article  Google Scholar 

  • Thomas SC (1996) Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. Am J Bot 83:556–566

    Article  Google Scholar 

  • Umeki K (1995) Modeling the relationship between the asymmetry in crown display and local environment. Ecol Model 82:11–20

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New-York

    Book  Google Scholar 

  • Vincent G, Sabatier D, Blanc L, Chave J, Weissenbacher E, Pélissier R, Fonty E, Molino J-F, Couteron P (2012) Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Rem Sens Env 125:23–33

    Article  Google Scholar 

  • Vincent G, Caron F, Sabatier D, Blanc L (2013) LiDAR shows that higher forests have more slender trees. Bois Forêts Tropiques

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci 106:7040–7045

    Article  PubMed  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Yamada T, Ngakan OP, Suzuki E (2005) Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. Am J Bot 92:45–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

UPSP is a permanent joint research station of the Karnataka Forest Department, Bangalore, and the French Institute of Pondicherry, India. We are very grateful to the many field workers, technicians, engineers and researchers who contributed to the plot’s long-term monitoring, and particularly to Jean-Pierre Pascal who settled the plot in 1990, to S. Ramalingam who took part in all field campaigns up to his retirement in 2011, and to the Gowda family from Uppangala village who are in charge of taking care of the plots. We’d also like to thank two anonymous reviewers of the journal, whose comments greatly helped us improving the manuscript. This study was conducted within the framework of a joint research project between UMR AMAP, France and NRSC (National Remote Sensing Centre), India, supported by IFPCAR (Indo-French Promotion Center for Advanced Research) through Grant 4409-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Pélissier.

Additional information

Communicated by T. Grams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antin, C., Pélissier, R., Vincent, G. et al. Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees 27, 1485–1495 (2013). https://doi.org/10.1007/s00468-013-0896-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0896-7

Keywords

Navigation