Skip to main content
Log in

Temporal patterns of soil CO2 efflux in a temperate Korean Larch (Larix olgensis Herry.) plantation, Northeast China

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

There is little information available regarding seasonal and annual variations in soil CO2 efflux from Korean Larch plantations, which are an important component of forests’ carbon balance in temperate China. In this study, the soil respiration rate (R s), soil temperature (T 10) and soil moisture (SM10) at 10 cm depth were observed in a Korean Larch (Larix olgensis Herry.) plantation in Northeast China from 2008 to 2012. Mean R s in growing season (GS) varied greatly, ranged from 2.32 ± 0.08 to 3.88 ± 0.09 μmol CO2 m−2 s−1 (mean ± SE) over the period of 2008–2012. In comparison with T-model, the increase of explained variability by applying both T 10 and SM10 to the T-M model is very small. It is indicated that R s was controlled largely by T 10 in the present study. By accounting for 22.2 and 17.7 % of the total soil CO2 emissions in 2010/2011 and 2011/2012, respectively, the soil CO2 efflux in dormant season (DS) was an essential component of the total soil CO2 efflux. The Q 10 value in the study period was always smaller for GS than DS, suggesting that soil carbon cycling may be more sensitive to the temperature changes at low than at high temperature range. These results indicated that climate changes may have great potential impacts on temperate Larch plantations in Northeast China, owing to soil carbon emissions of Larch plantation during the long period of DS being more sensitive to T 10 than in GS, and played a significant role in the annual forest ecosystems carbon budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

R s :

Soil respiration rate

T 10 :

Soil temperature at 10 cm depth

SM10 :

Soil moisture at 10 cm depth

T A :

Air temperature

PPT:

Precipitation

GS:

Growing season

DS:

Dormant season

F g :

Soil carbon efflux in growing season

F d :

Soil carbon efflux in dormant season

F t :

Annual total soil carbon efflux

References

  • Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186. doi:10.1007/BF00992977

    Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154. doi:10.1046/j.1469-8137.2000.00683.x

    Article  CAS  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res 107:4607. doi:10.1029/2002JD002055

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572. doi:10.1038/25119

    Article  CAS  Google Scholar 

  • Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can J For Res 23:1402–1407. doi:10.1139/x93-177

    Article  Google Scholar 

  • Brooks PD, McKnight D, Elder K (2004) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biol 11:231–238. doi:10.1111/j.1365-2486.2004.00877.x

    Article  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors regulating soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635. http://dx.doi.org/10.1016/S0038-0717(00)00077-8

  • CFA (2004) Statistics of forest resources in China (1999–2003). Chinese Forestry Press, Beijing (in Chinese)

  • Chen DK, Zhou XF, Zhu N (1994) Natural secondary forest structure, function, dynamics and management. Northeast Forestry University Press, Harbin (in Chinese)

  • Chen BY, Liu SR, Ge JP, Chu JX (2010) Annual and seasonal variations of Q 10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biol Biochem 42:1735–1742. http://dx.doi.org/ 10.1016/j.soilbio.2010.06.010

    Google Scholar 

  • Chinese Administration of Forestry (CFA) (1999) Statistics of forest resources in China (1994–1998). Chinese Forestry Press, Beijing (in Chinese)

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q 10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biol 10:161–169. doi:10.1111/j.1529-8817.2003.00727.x

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4:217–227. doi:10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GE, Griffis T, Morgenstern K (2002) Measuring forest floor CO2 fluxes in Douglas-fir forest. Agric For Meteorol 110:299–317. http://dx.doi.org/10.1016/S0168-1923(01)00294-5

  • Fahey TJ, Tierney GL, Fitzhugh RD, Wilson GF, Siccama TG (2005) Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Can J For Res 35:244–253. doi:10.1139/x04-182

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochem Cycles 13:775–779. doi:10.1029/1999GB900006

    Article  CAS  Google Scholar 

  • Grogan P, Jonasson S (2005) Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Global Change Biol 11:465–475. doi:10.1111/j.1365-2486.2005.00912.x

    Article  Google Scholar 

  • Grogan P, Jonasson S (2006) Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Global Change Biol 12:1479–1495. doi:10.1111/j.1365-2486.2006.01184.x

    Article  Google Scholar 

  • Janssens IA, Pilegaard K (2003) Large seasonal changes in Q 10 of soil respiration in a beech forest. Global Change Biol 9:911–918. doi:1046/j.1365 -2486.2003.00636.x

    Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278. doi:10.1046/j.1365-2486.2001.00412.x

    Google Scholar 

  • Kang S, Doh S, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biol 9:1427–1437. doi:10.1046/j.1365-2486.2003.00668.x

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob Change Biol 5:169–182. doi:10.1046/j.1365-2486.1999.00214.x

  • Li RP, Zhou GS, Wang Y (2010) Responses of soil respiration in non-growing seasons to environmental factors in a maize agroecosystem, Northeast China. Chinese Sci Bull 55:2723–2730. doi:10.1007/s11434-010-3181-9

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. http://www.jstor.org/stable/2389824

    Google Scholar 

  • Luan JW, Liu SR, Wang JX, Zhu XL, Shi ZM (2011) Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biol Biochem 43:503–512. http://dx.doi.org/10.1016/j.soilbio.2010.11.010

  • Luo Y, Wan S, Hui D, Linda L, Wallace L (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. doi:10.1038/35098065

    Article  PubMed  CAS  Google Scholar 

  • Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359. doi:10.1139/x99-218

    Google Scholar 

  • Mariko S, Nishimura N, Mo W, Matsui Y, Kibe T, Koizumi H (2000) Winter CO2 flux from soil and snow surfaces in a cool temperate deciduous forest. Japan Ecol Res 15:363–372. doi:10.1046/j.1440-1703.2000.00357.x

    Article  Google Scholar 

  • Mast MA, Wickland KP, Striegl RT, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem Cycles 12:607–620. doi:10.1029/98GB02313

    Article  CAS  Google Scholar 

  • McDowell NG, Marshall JD, Hooker TD, Musselman RC (2000) Estimating CO2 flux from snowpacks at three sites in the Rocky Mountains. Tree Physiol 20:745–753. doi:10.1093/treephys/20.11.745

    Article  PubMed  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795. http://dx.doi.org/10.1016/S0038-0717(02)00168-2

    Google Scholar 

  • Mo W, Lee M, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94. doi:10.1016/j.agrformet.2005.08.015

    Google Scholar 

  • Oechel WC, Vourlitis G, Hastings SJ (1997) Cold season CO2 emission from arctic soils. Global Biogeochem Cycles 11:163–172. doi:10.1029/96GB03035

    Article  CAS  Google Scholar 

  • Pang Z, Yu XX, Zha TS, Jia GD, Wu HL, Lv XZ, Li YT, Zhou B, Fan MR, Song SM, Zhao Y, Huang ZY, Deng WP, Wang HN, Zhang Y, Yang ZG, Fan DX (2012) Environmental relationships with the interannual and seasonal variation of soil respiration in a cedar (Platycladus orientalis) plantation in northern China. Can J For Res 42:934–942. doi:10.1139/X2012-043

    Article  CAS  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics. Global Biogeochem Cycles 14:1071–1080. doi:10.1029/1999GB900097

    Article  CAS  Google Scholar 

  • Pinck LA, Soulides DA, Allison FE (1961) Antibiotics in soils: II. Extent and mechanism of release. Soil Sci 91:94–99

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B 44:81–99. doi:10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  • Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90. doi:10.1023/A:1006112000616

    Article  CAS  Google Scholar 

  • Schindlbacher A, Boltenstern SZ, Glatzel G, Jandl R (2007) Winter soil respiration from an Austrian mountain forest. Agric For Meteorol 146:205–215. http://dx.doi.org/10.1016/j.agrformet.2007.06.001

    Google Scholar 

  • Schlentner RE, Van Cleve K (1985) Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can J For Res 15:97–106. doi:10.1139/x85-018

    Article  CAS  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20. doi:10.1023/A:1006247623877

    Article  CAS  Google Scholar 

  • Singh S, Amiro BD, Quideaua SA (2008) Effects of forest floor organic layer and root biomass on soil respiration following boreal forest fire. Can J For Res 38:647–655. doi:10.1139/X07-200

    Article  Google Scholar 

  • Sullivan PF, Arens SJT, Sveinbjörnsson B, Welker JM (2010) Modeling the seasonality of belowground respiration along an elevation gradient in the western Chugach Mountains, Alaska. Biogeochemistry 101:61–75. doi:10.1007/s10533-010-9471-0

    Article  Google Scholar 

  • Taras B, Sturm M, Liston GE (2002) Snow-ground interface temperatures in the Kuparuk river basin, arctic Alaska: measurements and model. J Hydrometeorol 3:377–394

    Article  Google Scholar 

  • Uchida M, Mo WH, Nakatsubo T, Horikoshie T, Tsuchiya Y, Koizumif H (2005) Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agric For Meteorol 134:102–109. doi:10.1016/j.agrformet.2005.11.003

    Article  Google Scholar 

  • Valverde-Barrantes OJ (2007) Relationships among litterfall, fine-root growth, and soil respiration for five tropical tree species. Can J For Res 37:1954–1965. doi:10.1139/X07-057

    Article  CAS  Google Scholar 

  • Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80:686–701. doi:10.1890/0012-9658(1999)080[0686:ECMOCA]2.0.CO;2

    Google Scholar 

  • Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Global Change Biol 12:2103–2114. doi:10.1111/j.1365-2486.2006.01234.x

    Article  Google Scholar 

  • Wang CK, Yang JY (2007) Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biol 13:123–131. doi:10.1111/j.1365-2486.2006.01291.x

    Article  Google Scholar 

  • Wang XH, Piao SL, Ciais P, Janssens IA, Reichstein M, Peng SS, Wang T (2010) Are ecological gradients in seasonal Q 10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol Biochem 42:1728–1734. http://dx.doi.org/10.1016/j.soilbio.2010.06.008

    Google Scholar 

  • Wang YD, Li QK, Wang HM, Wen XF, Yang FT, Ma ZQ, Liu YF, Sun XM, Yu GR (2011) Precipitation frequency controls interannual variation of soil respiration by affecting soil moisture in a subtropical forest plantation. Can J For Res 41:1897–1906. doi:10.1139/X11-105

    Article  Google Scholar 

  • Wang YD, Wang ZL, Wang HM, Guo CC, Bao WK (2012) Rainfall pulse primarily drives litterfall respiration and its contribution to soil respiration in a young exotic pine plantation in subtropical China. Can J For Res 42:657–666. doi:10.1139/X2012-017

    Article  Google Scholar 

  • Widén B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31:786–796. doi:10.1139/x01-012

    Article  Google Scholar 

  • Xu M, Qi Y (2001) Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochem Cycles 15:687–696. doi:10.1029/2000GB001365

    Article  CAS  Google Scholar 

  • Zhang HD, Zhou M, Zhao PW, Bao QC, Hai L (2008) Soil Respiration of Larix gmelinii Forest in Cool Temperate Zone. Scientia Silvae Sinicae 44:142–145 (in Chinese with English abstract)

    Google Scholar 

  • Zhou YR, Yu ZL, Zhao SD (2000) Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica 24:518–522 (in Chinese with an English abstract)

    Google Scholar 

  • Zhu JJ, Yan QL, Fan AN, Yang K, Hu ZB (2009) The role of environmental, root, and microbial biomass characteristics in soil respiration in temperate secondary forests of Northeast China. Trees 23:189–196. doi:10.1007/s00468-008-0267-y

    Article  Google Scholar 

  • Zimov SA, Davidov SP, Voropaev YV, Prosiannikov SF, Semiletov IP, Chapin MC, Chapin FS (1996) Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change 33:111–120. doi:10.1007/BF00140516

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National key basic research and development program (No 2011CB403201), the Special Fund for Forestry Scientific Research in the Public Interest (No 201204101), the National Key Technologies R&D Program of China (No 2012BAD22B04), the Doctoral Initial Fund Project of Liaoning Province (No 20111144) and the CFERN & GENE Award Funds on Ecological paper. We are grateful to Dr. Fusheng Chen and Prof. Chunjiang Liu for their valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Wei.

Additional information

Communicated by U. Luettge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, W., Wei, W., Zhang, H. et al. Temporal patterns of soil CO2 efflux in a temperate Korean Larch (Larix olgensis Herry.) plantation, Northeast China. Trees 27, 1417–1428 (2013). https://doi.org/10.1007/s00468-013-0889-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0889-6

Keywords

Navigation