Skip to main content
Log in

Xylem cell length under drought and its value for predicting radial growth of SRF poplar cultivars (Populus spp.)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Xylem cell length of juvenile tree rings was investigated in poplars in order to check the hypotheses that fiber length or vessel element length are indicative of drought tolerance and have predictive value for final stem base diameter at the end of rotation. The radial increment in the drought year 2003 served as the reference indicator for quantifying drought tolerance. All nine investigated cultivars suffered severely. In terms of their moderately decreased radial increment in 2003, the two aspen cultivars were clearly less drought susceptible than the seven hybrid poplar cultivars. The variance components of xylem cell length data explained by the two genetic factors ‘cultivar’ and ‘botanic section’ as well as the ‘tree ring’ (of the years 2002 and 2003) were compared by means of ANOVAs. The cultivar effects were superior to the effects of the critical precipitation status in 2003 and the botanic section. Fiber and vessel element length were found to be less sensitive to the drought compared with radial increment. They did neither correlate with radial increment in the drought year 2003 nor in 2002. Therefore, higher xylem cell length cannot indicate drought tolerance in poplars. However, a linear relationship between fiber length of both juvenile tree rings and the stem base diameter proved to be highly significant to a linear mixed effect model. Higher fiber length of a juvenile tree ring was considered to be predictive of larger stem base diameter at the end of rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FL:

Libriform fiber cell length (or fiber length)

i r :

Radial increment

SRF:

Short rotation forestry

VEL:

Vessel element length (or vessel cell length)

References

  • Arend M, Fromm J (2003) Ultrastructural changes in cambial cell derivatives during xylem differentiation in poplar. Plant Biol 5(3):255–264

    Article  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27(7):985–992

    Article  PubMed  Google Scholar 

  • Blake TJ, Sperry JS, Tschaplinski TJ, Wang SS (1996) Water relations. In: Stettler R, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 515–539

    Google Scholar 

  • BLE (2012) Die Pappel—Klone, Klonmischungen und Familieneltern (BLE). Federal Office for Agriculture and Food, Referat 324, Deichmanns Aue 29, 53179 Bonn, Germany

  • Cocozza C, Giovannelli A, Traversi M, Castro G, Cherubini P, Tognetti R (2011) Do tree-ring traits reflect different water deficit responses in young poplar clones (Populus × canadensis Mönch ‘I-214’ and P deltoides ‘Dvina’)? Trees—Struct Funct 25(6):975–985

    Article  Google Scholar 

  • Cohen J (1973) Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ Psychol Meas 33(1):107–112

    Article  Google Scholar 

  • DeBell JD, Gartner BL, DeBell DS (1998) Fiber length in young hybrid Populus stems grown at extremely different rates. Can J Forest Res 28(4):603–608

    Article  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29(10):1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Fang SZ, Xu XZ, Lu SX, Tang LZ (1999) Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass Bioenerg 17(5):415–425

    Article  Google Scholar 

  • FNR (2011) Anbaufläche für nachwachsende Rohstoffe. German Agency for Renewable Resources. http://www.fnr.de. Accessed 14 July 2012

  • Goyal GC, Fisher JJ, Krohn MJ, Packood RE, Olson JR (1999) Variability in pulping and fiber characteristics of hybrid poplar trees due to their genetic makeup, environmental factors, and tree age. Tappi J 82(5):141–147

    CAS  Google Scholar 

  • Gruss K, Becker G (1993) Anatomische und technologische Eigenschaften des Holzes ausgewählter Pappelklone und ihr Einfluss auf ihre industrielle Verwertung. In: Hüttermann A (ed) Anbau von Pappel bei mittlerer Umtriebszeit. J.D. Sauerländer’s Verlag, Frankfurt am Main, pp 92–112

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol Plant Mol Biol 24:519–570

    Article  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Article  Google Scholar 

  • Ivkovich M (1996) Genetic variation of wood properties in balsam poplar (Populus balsamifera L.). Silvae Genet 45(2–3):119–124

    Google Scholar 

  • Jeffrey EC (1917) The anatomy of woody plants. University of Chicago Press, Chicago

    Google Scholar 

  • Klasnja B, Kopitovic S, Orlovic S (2003) Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones. Wood Sci Technol 37(3–4):331–337

    Article  CAS  Google Scholar 

  • Koubaa A, Hernandez RE, Beaudoin M, Poliquin J (1998) Interclonal, intraclonal, and within-tree variation in fiber length of poplar hybrid clones. Wood Fiber Sci 30(1):40–47

    CAS  Google Scholar 

  • Krabel D (2000) Influence of sucrose on cambial activity. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 112–126

    Google Scholar 

  • Krabel D, Bodson M, Eschrich W (1994) Seasonal-changes in the cambium of trees. 1. Sucrose content in Thuja occidentalis. Bot Acta 107(1):54–59

    CAS  Google Scholar 

  • Krabel D, Roloff A, Bodson M (1999) Influence of sucrose on seasonal cambial growth. J Exp Bot 50((suppl)):25–26

    Google Scholar 

  • Küchler W (2004) Die Dürreperiode 2003 in Sachsen (The drought period of 2003 in Saxony. German). http://www.smul.sachsen.de/umwelt/download/klima/duerrebericht_2003_2.pdf. Landesamt für Umwelt und Geologie, Dresden. Accessed 8 Mar 2012

  • Liese W, Ammer U (1958) Untersuchungen über die Länge der Holzfaser bei der Pappel. Holzforschung 11(5/6; special issue on Populus research):165–174

    Google Scholar 

  • Liesebach M, von Wühlisch G, Muhs H-J (2000) Überlegenheit von Aspen-Arthybriden bei der Biomasseproduktion im Kurzumtrieb. Die Holzzucht 12:11–18

    Google Scholar 

  • Liesebach H, Schneck V, Ewald E (2010) Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids. Tree Genet Genomes 6(2):259–269

    Article  Google Scholar 

  • Luo ZB, Langenfeld-Heyser R, Calfapietra C, Polle A (2005) Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees—Struct Funct 19(2):109–118

    Article  Google Scholar 

  • Mátyás C, Peszlen I (1997) Effect of age on selected wood quality traits of poplar clones. Silvae Genet 46(2–3):64–72

    Google Scholar 

  • Mellerowicz E, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47(1–2):239–274

    Article  PubMed  CAS  Google Scholar 

  • Meyer M (2010) Trockenheitsreaktionen und holzanatomische Eigenschaften der Zitter-Pappel (Populus tremula L.)—Physiologie und QTL-mapping/water deficit reaction and wood anatomical characteristics of European aspen (Populus tremula L.)—Physiology and QTL-mapping (doctoral dissertation in German with English abstract and captions), vol 31. Forstwissenschaftliche Beiträge Tharandt/Contributions to Forest Science. Eugen Ulmer GmbH & Co., Stuttgart

  • Meyer-Uhlenried KH (1959) Über die Vererbung von Holzfaserlängen bei verschiedenen Arten der Gattung Populus. Der Züchter (Theor Appl Genet) 29(3):117–123

    Article  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Thiec D, Brechet C, Brignolas F (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol 169(4):765–777

    Article  PubMed  Google Scholar 

  • Monteoliva S, Senisterra G (2008) Site, hybrid crosses and clone effect on growth and wood properties of Populus. Invest Agrar-Sist R 17(3):261–270

    Google Scholar 

  • Nepveu G, Keller R, Teissierducros E (1978) Juvenile selection for wood quality in Populus nigra and Populus euramericana. Ann Sci For 35(1):69–92

    Article  Google Scholar 

  • Pande PK, Dhiman RC (2011) Performance and variability patterns in wood properties and growth traits in the parents, F1 and F2 generation hybrid clones of Populus deltoides. J For Res (Harbin) 22(3):379–385

    Article  Google Scholar 

  • Peszlen I (1994) Influence of age on selected anatomical properties of Populus clones. Iawa J 15(3):311–321

    Google Scholar 

  • Petzold R, Schwärzel K, Feger KH (2011) Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions. Eur J For Res 130(5):695–706

    Article  Google Scholar 

  • Schreiber SG, Hacke UG, Hamann A, Thomas BR (2011) Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol 190(1):150–160

    Article  Google Scholar 

  • Schreiner EJ (1927) The breeding of forest trees for pulp wood. J N Y Bot Gard 28(327):49–63

    Google Scholar 

  • Spinelli R, Magagnotti N, Nati C (2011) Work quality and veneer value recovery of mechanised and manual log-making in Italian poplar plantations. Eur J For Res 130(5):737–744

    Article  Google Scholar 

  • Stanton B, Eaton J, Johnson J, Rice D, Schuette B, Moser B (2002) Hybrid poplar in the Pacific northwest—the effects of market-driven management. J For 100(4):28–33

    Google Scholar 

  • Stettler R, Zsuffa L, Wu R (1996) The role of hybridization in the genetic manipulation of Populus. In: Stettler R, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 87–112

    Google Scholar 

  • Stout AB, Schreiner EJ (1933) Results of a project in hybridizing poplars. J Hered 24(6):217–229

    Google Scholar 

  • Telewski FW, Aloni R, Sauter JJ (1996) Physiology of secondary tissues of Populus. In: Stettler R, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 301–329

    Google Scholar 

  • Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff. Hanser, München

    Google Scholar 

  • West BT, Welch KB, Gałecki AT (2007) Linear mixed models: a practical guide using statistical software. Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Wolf H, Bönisch B (2004) Anbau schnellwachsender Gehölze auf stillgelegten landwirtschaftlichen Flächen zur Holzstoffproduktion—Plantation of fast growing woody species on set aside agricultural land for the production of pulp wood (German with English abstract). In: Begemann F, Schröder S (eds) Produktvielfalt durch Ressourcenvielfalt—Potenziale genetischer Ressourcen (conference proceedings), Bonn, Germany, 2003. Zentralstelle für Agrardokumentation und -information (ZADI), Federal Office for Agriculture and Food, Bonn, pp 122–132

  • Yanchuk AD, Micko MM (1990) Radial variation of wood density and fiber length in trembling aspen. Iawa Bull 11(2):211–215

    Google Scholar 

  • Yanchuk AD, Dancik BP, Micko MM (1984) Variation and heritability of wood density and fiber length of trembling aspen in Alberta, Canada. Silvae Genet 33(1):11–16

    Google Scholar 

  • Yu QB, Tigerstedt PMA, Haapanen M (2001) Growth and phenology of hybrid aspen clones (Populus tremula L. x Populus tremuloides Michx.). Silva Fenn 35(1):15–25

    Google Scholar 

  • Zawaski C, Kadmiel M, Ma C, Gai Y, Jiang XN, Strauss SH, Busov VB (2011) SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytol 191(3):678–691

    Article  PubMed  CAS  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation—its causes and control. Springer Series in Wood Science. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We thank our laboratory staff members D. Berger, R. Kniesel and D. Jacobi. Thanks to the permission and assistance of Dr. H. Wolf and other staff members of the Saxonian public enterprise Sachsenforst (department of forest genetics and forest tree breeding, Pirna, Germany), we were able to sample trees in the field. We thank Prof. Dr. S. Wagner for consultation related to the model building. The comments of the anonymous reviewers enabled us to improve the manuscript considerably. Our work was based on funding by the German Agency for Renewable Resources (http://www.fnr.de) and the German Federal Ministry of Food, Agriculture and Consumer Protection. The project name is FastWOOD (subproject no. 5, support code: 22011507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Meyer.

Additional information

Communicated by H. Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M., Solger, A. & Krabel, D. Xylem cell length under drought and its value for predicting radial growth of SRF poplar cultivars (Populus spp.). Trees 27, 1353–1363 (2013). https://doi.org/10.1007/s00468-013-0883-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0883-z

Keywords

Navigation