Advertisement

Trees

, Volume 27, Issue 5, pp 1297–1307 | Cite as

Source water, phenology and growth of two tropical dry forest tree species growing on shallow karst soils

  • Héctor Estrada-MedinaEmail author
  • Louis S. Santiago
  • Robert C. Graham
  • Michael F. Allen
  • Juan José Jiménez-Osornio
Original Paper

Abstract

Seasonally dry tropical forests are dominated by deciduous and evergreen tree species with a wide range of leaf phenology. We hypothesized that Piscidia piscipula is able to extend leaf senescence until later in the dry season due to deeper and more reliable water sources than Gymnopodium floribundum, which loses leaves earlier in the dry season. Physiological performance was assessed as timing of leaf production and loss, growth, leaf water potential, depth of water uptake determined by stable isotopes, and leaf stable isotopic composition of carbon (δ13C) and oxygen (δ18O). P. piscipula took water primarily from shallow sources, whereas G. floribundum took water from shallow and deep sources. The greatest variation in water sources occurred during the onset of the dry season, when G. floribundum was shedding old leaves and growing new leaves, but P. piscipula maintained its leaves from the previous wet season. P. piscipula showed greater relative growth rate, greater leaf expansion rates, and more negative predawn and midday water potentials than G. floribundum. P. piscipula also exhibited greater leaf organic δ13C and lower δ18O values, indicating that the decrease in photosynthetic carbon isotope discrimination was associated with greater stomatal conductance and greater photosynthesis. Our results indicate that the contrasting early and late dry season leaf loss phenology of these two species is not simply determined by rooting depth, but rather a more complicated suite of characteristics based on opportunistic use of dynamic water sources, maximizing carbon gain, and maintenance of water potential during the dry season.

Keywords

Ground water Yucatan Rooting depth Seasonally dry tropical forest Stable isotopes 

Notes

Acknowledgments

We thank to CONACyT-UCMEXUS for the scholarship granted to the first author for doctoral studies at the University of California Riverside. This work was supported by UCMEXUS through the projects: “Importance of limestone bedrock and subsurface pockets of soil as potential sources of water for dry deciduous tree species in northern Yucatán” and “Water contribution by limestone bedrock and subsurface SP and its effect on the water use efficiency of two tree species in Yucatan, Mexico”; grants from the National Science Foundation (DEB 0615427, DEB 0770 6813, EF 0410408, and CRR 0120778), and the UCR Center for Conservation Biology. We would like to thank the owners of the quarry, especially Héctor Buenfil Cervera; the workers of the quarry, especially Roger Armando Fernández Paredes, and Augusto Cervera Buenfil for helping with the work logistics; Alfonso Castillo, María José Romero, Raúl Hernandez and Ariel Esparza for helping with the field and laboratory work.

References

  1. Allison GB, Barnes CJ, Hughes MW (1983) The distribution of Deuterium and O-18 in dry soils. 2. Experimental. J Hydrol 64:377–397CrossRefGoogle Scholar
  2. Andrade JL (2003) Dew deposition on epiphytic Bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488CrossRefGoogle Scholar
  3. Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94CrossRefGoogle Scholar
  4. Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637Google Scholar
  5. Chemás A, Rico-Gray V (1991) Apiculture and management of associated vegetation by the maya of Tixcacaltuyub, Yucatán, México. Agrofor Syst 13:13–25CrossRefGoogle Scholar
  6. Clus O, Ortega P, Muselli M, Milimouk I, Beysens D (2008) Study of dew water collection in humid tropical islands. J Hydrol 361:159–171CrossRefGoogle Scholar
  7. CONAGUA (2000) Normales climatológicas del municipio de Mérida, Yucatán en el periodo 1981–2000 http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=29:resumen-historico&catid=1:general&Itemid=93
  8. CONAGUA (2007) Bitácora Meteorológica No. 010. Octubre 2007. Servicio Meteorológico Nacional, México. http://smn.cna.gob.mx/boletin/bitacora/bitacora-feb08.html
  9. CONAGUA (2008) Bitácora Meteorológica No. 02. Febrero 2008. Servicio Meteorológico Nacional, México. http://smn.cna.gob.mx/boletin/bitacora/bitacora-feb08.html
  10. de Jong C (2005) The contribution of condensation to the water cycle under high-mountain conditions. Hydrol Process 19:2419–2435CrossRefGoogle Scholar
  11. Do FC, Goudiaby VA, Gimenez O, Diagne AL, Diouf M, Rocheteau A, Akpo LE (2005) Environmental influence on canopy phenology in the dry tropics. Forest Ecol Manage 215:319–328CrossRefGoogle Scholar
  12. Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16PubMedCrossRefGoogle Scholar
  13. Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082CrossRefGoogle Scholar
  14. Ehleringer JR, Roden J, Dawson TE (2000) Assessing ecosystemlevel water relation through stable isotope analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 181–198CrossRefGoogle Scholar
  15. Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ (2010) The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Vadose Zone 9:653–661CrossRefGoogle Scholar
  16. Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ, Robles-Casolco S (2013) The role of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Plant Soil 362:37–50CrossRefGoogle Scholar
  17. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  18. González-Iturbe JA, Olmsted I, Tun-Dzul F (2002) Tropical dry forest recovery after long term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatan, Mexico. Forest Ecol Manag 167:67–82CrossRefGoogle Scholar
  19. Hasselquist N, Allen M, Santiago L (2010) Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164:881–890PubMedCrossRefGoogle Scholar
  20. Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 90(1):37–42PubMedCrossRefGoogle Scholar
  21. Holbrook M, Whitbeck J, Mooney H (1995) Drought responses of neotropical dry forest trees. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, CambridgeGoogle Scholar
  22. IAEA (2001). GNIP Maps and Animations, International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org
  23. Jackson PC, Cavelier J, Goldstein G, Meinzer FC, Holbrook NM (1995) Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101:197–203CrossRefGoogle Scholar
  24. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  25. Lawrence RJ, Gedzelman DS (1996) Low stable isotope ratios of tropical cyclone rains. Geophys Res Lett 23:527–530CrossRefGoogle Scholar
  26. Lobo JA, Quesada M, Stoner KE, Fuchs EJ, Herrerí-as-Diego Y, Rojas J, Saborí-o G (2003) Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costarica and Mexico. Am J Bot 90:1054–1106PubMedCrossRefGoogle Scholar
  27. McCulley RL, Jobbágy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia 141:620–628PubMedCrossRefGoogle Scholar
  28. McMahon MJ, Christy AD (2000) Root growth, calcite precipitation, and gas and water movement in fractures and macropores: a review with field observations. Ohio J Sci 100:88–93Google Scholar
  29. Meinzer FC, Andrade JL, Goldstein G, Holbrook M, Cavelier J, Wright J (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301CrossRefGoogle Scholar
  30. Meinzer FC, Woodruff DR, Domec JC, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41PubMedCrossRefGoogle Scholar
  31. Montañez-Escalante P, García-Barrios L, Jiménez-Osornio J (2005) Quarry reclamation in Mérida, Yucatán, México: a review on achievements and current limitations. Trop Subtrop Agroecosyst 5:101–108Google Scholar
  32. Nelson G (1994) The trees of Florida: a reference and field guide. Pineapple Press, SarasotaGoogle Scholar
  33. Orellana R, Balam-Ku M, Bañuelos-Robles I, García E, González-Iturbe JA, Herrara-Cetina F, Vidal-López J (1999) Evaluación climática. In: García de Fuentes A, Córdoba y Ordoñez J, Chico Ponce de León P (eds) Atlas de Procesos Territoriales de Yucatán. Universidad Autónoma de Yucatán, Mérida, pp 163–182Google Scholar
  34. Ortiz, JJ (1994) Etnoflora Yucatanense. Polygonaceae. Universidad Autónoma de Yucatán. Fascículo 10Google Scholar
  35. Perry E, Velazquez-Oliman G, Socki RA (2003) Hidrogeology of the Yucatan Peninsula. In: Gomez-Pompa A, Allen MF, Fedick SL, Osornio JJ (eds) The Lowland Maya area: three millennia at the human-wildland interface. Food Products Press, BinghamtonGoogle Scholar
  36. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269PubMedCrossRefGoogle Scholar
  37. Phillips D, Newsome S, Gregg J (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527PubMedCrossRefGoogle Scholar
  38. Pineda-García F, Paz H, Meinzer FC (2012) Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02582
  39. Price RM, Swart PK, Willoughby HE (2008) Seasonal and spatial variation in the stable isotopic composition ([delta]18o and [delta]d) of precipitation in South Florida. J Hydrol 358:193–205CrossRefGoogle Scholar
  40. Querejeta J, Estrada-Medina H, Allen M, Jiménez-Osornio JJ, Ruenes R (2006) Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287:187–197CrossRefGoogle Scholar
  41. Querejeta J, Estrada-Medina H, Allen M, Jiménez-Osornio JJ (2007) Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152:26–36PubMedCrossRefGoogle Scholar
  42. Rico-Gray V, Chemás A, Mandujano S (1991) Uses of tropical deciduous forest species by the Yucatecan Maya. Agrofor Syst 14:149–161CrossRefGoogle Scholar
  43. Roden JS, Ehleringer JR (1999) Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments. Oecologia 121:467–477CrossRefGoogle Scholar
  44. Saha AK, da Stenberg LSL, Miralles-Wilhelm F (2009) Linking water sources with foliar nutrient status in upland plant communities in the Everglades National Park, USA. Ecohydrology 2:42–54CrossRefGoogle Scholar
  45. Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502PubMedCrossRefGoogle Scholar
  46. Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357CrossRefGoogle Scholar
  47. Servicio Meteorológico Nacional (2007) Resumen mensual meteorológico. Octubre 2007. Estación Mérida-Aeropuerto, YucatánGoogle Scholar
  48. Servicio Meteorológico Nacional (2008) Resumen mensual meteorológico. Febrero, 2008. Estación Mérida-Aeropuerto, YucatánGoogle Scholar
  49. Socki RA, Perry EC Jr, Romanek CS (2002) Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico. Limnol Oceanogr 47:1808–1818CrossRefGoogle Scholar
  50. Standley PC (1930) Flora of the Yucatán. Publication 279. Botanical Series, Vol III, No. 3. Field Museum of Natural History ChicagoGoogle Scholar
  51. Standley PC, Steyermark JA (1946). Polygonaceae. In: Standley PC, Steyermark JA (Eds) Flora of Guatemala-Part IV. Fieldiana Botany, vol 24, issue no. 4, pp 104–137Google Scholar
  52. Takahashi K (1998) Oxygen isotope ratios between soil water and stem water of trees in pot experiments. Ecol Res 13:1–5CrossRefGoogle Scholar
  53. Tyree MT, Vargas G, Engelbrecht BMJ, Kursar TA (2002) Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. J Exp Bot 53:2239–2247PubMedCrossRefGoogle Scholar
  54. Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447PubMedCrossRefGoogle Scholar
  55. West AG, Patrickson SJ, Ehleringer JR (2006) Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun Mass Spectrom 20:1317–1321PubMedCrossRefGoogle Scholar
  56. Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D (1997) Leaf phenology of woody species in a North Australian Tropical Savanna. Ecology 78:2542–2558CrossRefGoogle Scholar
  57. Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199CrossRefGoogle Scholar
  58. Zalamea M (2008) Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. Biotropica 40(3):295–304CrossRefGoogle Scholar
  59. Zhang XP, Yang ZL, Niu GY, Wang XY (2009) Stable water isotope simulation in different reservoirs of Manaus, Brazil, by community land model incorporating stable isotopic effect. Int J Climatol 29:619–628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Héctor Estrada-Medina
    • 1
    • 2
    Email author
  • Louis S. Santiago
    • 3
    • 4
  • Robert C. Graham
    • 2
  • Michael F. Allen
    • 5
  • Juan José Jiménez-Osornio
    • 1
  1. 1.Departamento de Manejo y Conservación de Recursos Naturales Tropicales (PROTROPICO), Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Department of Environmental Sciences, Soil and Water Sciences ProgramUniversity of CaliforniaRiversideUSA
  3. 3.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  4. 4.Smithsonian Tropical Research InstituteBalboaRepublic of Panama
  5. 5.Center for Conservation BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations