Trees

, Volume 27, Issue 4, pp 1071–1086 | Cite as

Developmental variations in sesquiterpenoid biosynthesis in East Indian sandalwood tree (Santalum album L.)

Original Paper

Abstract

The East Indian sandalwood tree, Santalum album L. is known for its fragrant heartwood and essential oil. The major bioactive principles of sandalwood oil, i.e., sesquiterpenoids (C15 isoprenoids), are known as ‘santalols’ and are globally used in medicinal, cosmetic, dietary, and aromatherapeutic applications. However, there are no available reports on the biosynthesis and metabolism of isoprenoids in this forest tree. Hence, we provide detailed insights into sesquiterpenoid metabolism across several in vitro and in vivo developmental stages. Since no molecular information was available, several genes encoding enzymes participating in early and critical steps of isoprenoid biosynthetic pathways were isolated using degenerate primers, and their expression patterns across the developmental stages were studied by semi-quantitative reverse transcription PCR. Results indicate that the isoprenoid biosynthetic pathway is differentially regulated with development and in tissue-specific manner. Accumulation of plastidial isoprenoid pigments increased with development, while the amounts of farnesylated intermediates decreased with maturation, thereby possibly indicating conversion into sesquiterpenoids. A differential expression pattern was observed for hydroxy-3-methylglutaryl coenzyme A reductase and 1-deoxyxyulose-5-phosphate synthase at the levels of transcripts and proteins, indicating post-transcriptional regulation. Transcript levels of farnesyl pyrophsophate, sesquiterpene and monoterpene synthases were quantitatively higher in callus, and lower in matured tree leaves. Sesquiterpene synthase activity across different developmental stages indicated a tissue-specific conversion and accumulation. Henceforth, the results would facilitate characterization of routes of sandalwood oil biosynthesis and for future improvement of sesquiterpenoid content in this tree.

Keywords

Development Farnesyl pyrophosphate In vitro Sandalwood Santalene Santalum album L. Sesquiterpenoid Somatic embryo 

Abbreviations

ACT

Actin

DXS

1-Deoxy-d-xylulose 5-phosphate synthase

FPP

Farnesyl pyrophosphate

FPPS

Farnesyl pyrophosphate synthase

GC–MS

Gas chromatography–mass spectrometry

HPTLC

High performance thin layer chromatography

HMG-CoAR

3-Hydroxy-3-methylglutaryl-CoA reductase

MEP

Methyl erythritol phosphate (mevalonate-independent) pathway

MTPS

Monoterpene synthase

MVA

Mevalonate-dependent pathway

sq RT-PCR

Semi-quantitative reverse transcriptase-polymerase chain reaction

STPS

Sesquiterpene synthase

Supplementary material

468_2013_858_MOESM1_ESM.pdf (556 kb)
Supplementary material 1 (PDF 555 kb)

References

  1. Adams RP (1985) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, ILGoogle Scholar
  2. Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399. doi:10.1186/1471-2164-10-399 PubMedCrossRefGoogle Scholar
  3. Arasada BL, Bommareddy A, Zhang X, Bremmon K, Dwivedi C (2008) Effects of alpha-santalol on proapoptotic caspases and p53 expression in UV B irradiated mouse skin. Anticancer Res 28:129–132PubMedGoogle Scholar
  4. Bach TJ, Lichtenthaler HK, Retey J (1980) Properties of membrane-bound 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC. 1.1.1.34) from radish seedlings and some aspects of its regulation. In: Mazliak P, Benveniste P, Costes C, Douce R (eds) Biogenesis and function of plant lipids. Elsevier, Amsterdam, pp 355–362Google Scholar
  5. Banthorpe DV, Branch SA (1985) The biosynthesis of C5–C20 terpenoid compounds. Nat Prod Rep 2:513–524CrossRefGoogle Scholar
  6. Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514. doi:10.1104/pp.108.126276 PubMedCrossRefGoogle Scholar
  7. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Lange BM, Trethewey RN, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425. doi:10.1016/j.tplants.2004.07.004 PubMedCrossRefGoogle Scholar
  8. Bohlmann J, Steele CL, Croteau R (1997) Monoterpene synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (4S)—limonene synthase, and (1S, 5S)-pinene synthase. J Biol Chem 272:21784–21792. doi:10.1074/jbc.272.35.21784 PubMedCrossRefGoogle Scholar
  9. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci 95:4126–4133PubMedCrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  11. Braun NA, Meier M, Hammerschmidt FJ (2005) New caledonian sandalwood oil—a substitute for East Indian Sandalwood Oil? J Essent Oil Res 17:477–480. doi:10.1080/10412905.2005.9698969 CrossRefGoogle Scholar
  12. Brooker JD, Russell DW (1975) Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings. Arch Biochem Biophy 167:723–729CrossRefGoogle Scholar
  13. Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85:469–473PubMedCrossRefGoogle Scholar
  14. Chebel AV, Koroch AR, Juliani JR, Juliani HR, Trippi VS (1998) Micropropagation of Minthostachys mollis (H.B.K.) Grieseb. and essential oil composition of clonally propagated plants. In Vitro Cell Dev Biol Plant 34:249–251. doi:stable/20064991 CrossRefGoogle Scholar
  15. Crovadore J, Schalk M, Lefort F (2012) Selection and mass production of Santalum album L. Calli for induction of sesquiterpenes. Biotechnol Biotec Eq 26:2870–2874. doi:10.5504/bbeq.2012.0028 CrossRefGoogle Scholar
  16. D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316. doi:10.1016/j.pbi.2005.03.012 PubMedCrossRefGoogle Scholar
  17. Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M (2006) The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys 454:123–136. doi:10.1016/j.abb.2006.08.006 PubMedCrossRefGoogle Scholar
  18. Doneva-Šapceska D, Dimitrovski A, Bojadžiev T, Milanov G, Vojnovski B (2006) Free and potentially volatile monoterpenes in grape varieties from the republic of Macedonia. Maced J Chem Chem Eng 25:51–56Google Scholar
  19. Duncan BD (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:359–364CrossRefGoogle Scholar
  20. Eibl H, Lands WEM (1969) A new, sensitive determination of phosphate. Anal Biochem 30:51–57PubMedCrossRefGoogle Scholar
  21. Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-Deoxyxylulose 5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909. doi:10.1074/jbc.M100854200 PubMedCrossRefGoogle Scholar
  22. Fujii H, Koyama T, Ogura K (1982) Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta 712:716–718PubMedCrossRefGoogle Scholar
  23. Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168:487–491. doi:10.1016/j.plantsci.2004.09.012 CrossRefGoogle Scholar
  24. Gellatly KS, Moorhead GBG, Duff SMG, Lefebvre DD, Plaxton WC (1994) Purification and characterization of a potato tuber acid phosphatase having significant phosphotyrosine phosphatase activity. Plant Physiol 106:223–232PubMedGoogle Scholar
  25. Göpfert JC, Macnevin G, Ro DK, Spring O (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:86. doi:10.1186/1471-2229-9-86 PubMedCrossRefGoogle Scholar
  26. Howes MJR, Simmonds MSJ, Kite GC (2004) Evaluation of the quality of sandalwood essential oils by gas chromatography-mass spectrometry. J Chromatogr A 1028:307–312. doi:10.1016/j.chroma.2003.11.093 PubMedCrossRefGoogle Scholar
  27. Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner T (2012) The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol 12:84. doi:10.1186/1471-2229-12-84 PubMedCrossRefGoogle Scholar
  28. Jones CG, Ghisalberti EL, Plummer JA, Barbour EL (2006) Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album. Phytochemistry 67:2463–2468PubMedCrossRefGoogle Scholar
  29. Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL, Barbour EL, Bohlmann J (2011) Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem 286:17445–17454. doi:10.1074/jbc.M111.231787 PubMedCrossRefGoogle Scholar
  30. Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43. doi:10.1186/1471-2229-11-43 PubMedCrossRefGoogle Scholar
  31. Kim TH, Ito H, Hatano T, Takayasu J, Tokuda H, Nishino H, Machiguchi T, Yoshida T (2006) New antitumor sesquiterpenoids from Santalum album of Indian origin. Tetrahedron 62:6981–6989. doi:10.1016/j.tet.2006.04.072 CrossRefGoogle Scholar
  32. Koch C, Reichling J, Schneele J, Schnitzler P (2008) Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 15:71–78PubMedCrossRefGoogle Scholar
  33. Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The sesquiterpene hydrocarbons of maize (Zea mays) from five groups with distinct developmental and organ-specific distributions. Phytochemistry 65:1895–1902. doi:10.1016/j.phytochem.2004.05.021 PubMedCrossRefGoogle Scholar
  34. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–371CrossRefGoogle Scholar
  35. Lloyd DG, McCown BH (1981) Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc 30:421–427Google Scholar
  36. Ma X, Gang DR (2006) Metabolic profiling of in vitro micropropagated and conventionally Greenhouse grown ginger (Zingiber officinale). Phytochemistry 67:2239–2255. doi:10.1016/j.phytochem.2006.07.012 PubMedCrossRefGoogle Scholar
  37. Matsuo Y, Mimaki Y (2010) Lignans from Santalum album and their cytotoxic activities. Chem Pharm Bull 58:587–590. doi:10.1248/cpb.58.587 PubMedCrossRefGoogle Scholar
  38. Misra BB, Dey S (2012a) Comparative phytochemical analysis and antibacterial efficacy of in vitro and in vivo extracts from East Indian sandalwood tree (Santalum album L.). Lett Appl Microbiol 55:476–486. doi:10.1111/lam.12005 Google Scholar
  39. Misra BB, Dey S (2012b) Differential extraction and GC–MS based quantification of sesquiterpenoids from immature heartwood of East Indian sandalwood tree. J Nat Sc Res 2:29–33Google Scholar
  40. Ochi T, Shibata H, Higuti T, Kodama K, Kusumi T, Takaishi Y (2005) Anti-Helicobacter pylori compounds from Santalum album. J Nat Prod 68:819–824. doi:10.1021/np040188q PubMedCrossRefGoogle Scholar
  41. Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45. doi:10.1186/1471-2229-11-45 PubMedCrossRefGoogle Scholar
  42. Parker W, Roberts JS, Ramage R (1967) Sesquiterpene biogenesis. Q Rev Chem Soc 21:331–363CrossRefGoogle Scholar
  43. Picaud S, Brodelius M, Brodelius PE (2005) Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry 66:961–967. doi:10.1016/j.phytochem.2005.03.027 PubMedCrossRefGoogle Scholar
  44. Querol J, Besumbes O, Lois LM, Boronat A, Imperial S (2001) A fluorometric assay for the determination of 1-deoxy-D-xylulose 5-phosphate synthase activity. Anal Biochem 296:101–105. doi:10.1006/abio.2001.5234 PubMedCrossRefGoogle Scholar
  45. Rangaswamy NS, Rao PS (1963) Experimental studies on Santalum album L. Establishment of tissue culture of endosperm. Phytomorphology 13:450–454Google Scholar
  46. Rodríguez-Concepción M, Gruissem W (1999) Arachidonic acid alters tomato HMG Expression and fruit growth and induces 3-hydroxy-3-methylglutary Co-enzyme A reductase-independent lycopene accumulation. Plant Physiol 119:41–48PubMedCrossRefGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1–3. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  48. Schaller H, Grausem B, Benveniste P, Chye M-L, Tan CT, Song Y-H, Chua N-H (1995) Expression of the Hevea brasiliensis (H.B.K.) müll. Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770PubMedGoogle Scholar
  49. Schnee C, Kollner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060. doi:10.1104/pp.008326 PubMedCrossRefGoogle Scholar
  50. Shearer AG, Hampton R (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159. doi:10.1038/sj.emboj.7600498 PubMedCrossRefGoogle Scholar
  51. Stasolla C, Belmonte MF, van Zyl L, Craig D, Liu W, Yeung EC, Sederoff R (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709. doi:10.1093/jxb/erh074 PubMedCrossRefGoogle Scholar
  52. Takasawa T, Fujita M, Nabeta K, Katayama K, Komuro K (1997) In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J Chem Soc Perkin Trans 1 1997(14):2065–2070Google Scholar
  53. Thai L, Rush JS, Maul JE, Devarenne T, Rodgers DL, Chappell J, Waechter CJ (1999) Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions. Proc Natl Acad Sci 96:13080–13085PubMedCrossRefGoogle Scholar
  54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  55. Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336:51–59. doi:10.1016/j.ab.2004.09.024 PubMedCrossRefGoogle Scholar
  56. Toroser D, Huber SC (1998) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Arch Biochem Biophys 355:291–300. doi:10.1006/abbi.1998.0740 PubMedCrossRefGoogle Scholar
  57. Valder C, Neugebauer M (2003) Western Australian sandalwood oil-new constituents of Santalum spicatum (R. Br.) A. DC. (Santalaceae). J Essent Oil Res 15:178–186CrossRefGoogle Scholar
  58. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Biotechnology Laboratory, Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Center for Chemical BiologyUniversiti Sains Malaysia (CCB@USM)Bayan LepasMalaysia

Personalised recommendations