Impact of abscisic acid in overcoming the problem of albinism in horse chestnut androgenic embryos

Abstract

Horse chestnut (Aesculus hyppocastanum L., Hyppocastanacea) is a relict species with a slow and complex reproductive cycle considered to have horticultural and medical importance. The cycle maybe circumvented via in vitro androgenesis. Androgenesis of horse chestnut was induced in microspores and anther culture on MS media. Some of the horse chestnut androgenic embryos were albinos. Addition of abscisic acid in media (in concentrations of 0.01, 0.1, 0.5, 1, 2, 5, 10, and 20 mg l−1) with horse chestnut androgenic embryos has circumvented the reproduction cycle barriers. The best results were achieved on medium with the lowest abscisic acid concentration (0.01 mg l−1) in microspore culture. The microspore culture proved to be a better model system for embryo production and albino embryo reduction than anther culture. Flow cytometry analysis after maturation treatments induced by ABA showed that 88 % of green embryos originating from microspore culture were haploid. However, 50 % of green embryos from anther culture were haploid. The remaining analyzed androgenic embryos, from both types of cultures were diploid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21:511–516

    PubMed  CAS  Google Scholar 

  2. Bergmann L (1960) Growth and division of single cell of higher plants in vitro. J Genet Physiol 43:841–851

    Article  CAS  Google Scholar 

  3. Bombardelli E, Morazzoni P, Griffini A (1996) Aesculus hippocastanum L. Fitoterapia 67:483–511

    CAS  Google Scholar 

  4. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603

    PubMed  Article  CAS  Google Scholar 

  5. Ćalić D, Zdravković-Korać S, Jevremović S, Guć-Šćekić M, Radojević LJ (2003) Efficient haploid induction in microspore suspension culture of Aesculus hippocastanum and karyotype analysis. Biol Plantarum 47:289–292

    Google Scholar 

  6. Ćalić D, Zdravković-Korać S, Radojević LJ (2005) Plant regeneration in anther culture of yellow buck (Aesculus flava Marshall.). In: Proc Final Conference COST 843 and COST 851 Joint Meeting. Stara Lesna, Slovakia, pp 183–185

  7. Ćalić-Dragosavac D, Zdravković-Korać S, Bohanec B, Radojević LJ, Vinterhalter B, Stevović S, Cingel A, Savić J (2010a) Effect of activated charcoal, abscisic acid and polyethylene glycol on maturation, germination and conversion of Aesculus hippocastanum androgenic embryos. Afr J Biotechnol 9:3786–3793

    Google Scholar 

  8. Ćalić-Dragosavac D, Zdravković-Korać S, Šavikin-Fodulović K, Radojević Lj, Vinterhalter B (2010b) Determination of aescin content in androgenic embryos and hairy root culture of Aesculus hippocastanum (Hippocastanaceae). Pharm Biol 48:563–567

    PubMed  Article  Google Scholar 

  9. Ćalić-Dragosavac, Stevović S, Zdravković-Korać S (2010c) Impact of genotype, age of tree and environmental temperature on androgenesis induction of Aesculus hyppocastanum L. Afr J Biotechnol 9:4042–4049

    Google Scholar 

  10. Capuana M, Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tiss Org Cult 48:23–29

    Article  CAS  Google Scholar 

  11. Caredda S, Devaux P, Sangwan RS, Clement C (1999) Differential development of plastids during microspore embryogenesis in barley. Protoplasma 208:248–256

    Article  Google Scholar 

  12. Chaney WR (1991) Horse chestnut: Aesculus hippocastanum. Arbor Age 15:31–32

    Google Scholar 

  13. Clément C, Sangwan RS, Sangwan BS (2005) Microspore embryo induction and development in higher plants: cytological and ultrastructural aspects. In: Nagata T, Lörz H, Idholm JMW (eds) Biotechnology in agriculture and forestry. Springer, Berlin, pp 53–72

    Google Scholar 

  14. de Laat AM, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Article  Google Scholar 

  15. Deschka G, Dimic N (1986) Cameraria ohridella sp. n. (Lep., Lithocolletidae) from Macedonia, Yugoslavia. Acta Entomol Jugoslavica 22:11–23

    Google Scholar 

  16. Ferrante A, Vernieri P, Serra G, Tognoni F (2004) Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul 43:127–134

    Article  CAS  Google Scholar 

  17. Gastaldo P, Caviglia AM, Profumo P (1994) Aesculus hippocastanum (horse chestnut): in vitro culture and production of aescin. In: Bajaj YPS (ed) Biotechnology of medicinal and aromatic plants. Springer, Berlin, pp 1–12

    Google Scholar 

  18. Gilbert M, Guichard S, Freise J, Grégorie JC, Heitland W, Straw NC, Tilbury C, Augustin S (2005) Forecasting Cameraria ohridella invasion dynamics in recently invaded countries: from validation to prediction. J Appl Ecol 42:805–813

    Article  Google Scholar 

  19. Harada T, Sato T, Asaka D, Matsukawa I (1991) Large-scale deletions of rice plastid DNA in anther culture. Theor Appl Genet 81:157–161

    Article  Google Scholar 

  20. Husain MK, Anis M, Shahyad A (2010) Somatic embryogenesis and plant regeneration in Pterocarpus marsupium Roxb. Trees 24:781–787

    Article  CAS  Google Scholar 

  21. Jacquard C, Nolin F, Hécart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339

    PubMed  Article  CAS  Google Scholar 

  22. Kravtsov A, Zubo YO, Yamburenko MV, Kulaeva ON, Kusnetsov VV (2011) Cytokinin and abscisic acid control plastid gene transcription during barley seedling de-etiolation. Plant Growth Regul 64:173–183

    Article  CAS  Google Scholar 

  23. Liu W, Zheng MY, Konzak CF (2002) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824

    Article  CAS  Google Scholar 

  24. Marinković N, Radojević LJ (1992) The influence of bud length, age of the tree and culture media on androgenesis induction in Aesculus carnea Hayne anther culture. Plant Cell Tiss Org Cult 31:51–59

    Google Scholar 

  25. Masaki H, Sakaki S, Atsumi T, Sakurai H (1995) Active-oxygen scavenging activity of plant extracts. Biol Pharm Bull 18:162–166

    PubMed  Article  CAS  Google Scholar 

  26. Matsuda H, Li Y, Murakami T, Ninimiya K, Araki N, Yoshikawa M, Yamahara I (1997) Effects of aescins Ia, Ib, IIa, IIb from horse chestnut, the seeds of Aesculus hippocastanum on acute inflammation in animals. Biol Pharm Bull 20:1092–1095

    PubMed  Article  CAS  Google Scholar 

  27. Mumtaz S, Naqvi SSM, Shereen A, Khan MA (1997) Salinity stress and the senescence process wheat in (Triticum aestivum L.). Pakistan J Bot 29:299–303

    Google Scholar 

  28. Muňoz-Amatriaín M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breeding 22:119–129

    Article  Google Scholar 

  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  30. Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo. Plant Cell Rep 22:885–893

    PubMed  Article  CAS  Google Scholar 

  31. Pedroso MC, Pais S (1993) Regeneration from anthers of adult Camellia japonica L. In Vitro Cell Dev Biol 29:155–159

    Google Scholar 

  32. Profumo P, Caviglia AM, Gastaldo P, Dameri RM (1991) Aescin content in embryogenic callus and in embryoids from leaf explants of Aesculus hippocastanum. Planta Med 57:50–52

    PubMed  Article  CAS  Google Scholar 

  33. Radojević LJ (1988) Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J Plant Physiol 132:322–326

    Article  Google Scholar 

  34. Radojević LJ (1995) Somatic embryogenesis in horse chestnut (Aesculus hippocastanum L.). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer Publishers, The Netherlands, pp 409–444

    Google Scholar 

  35. Radojević LJ, Trajković D (1983) A study of albinism in the androgenic embryos of Aesculus hippocastanum L. Period Biologorum 85:172–174

    Google Scholar 

  36. Radojević LJ, Marinković N, Jevremović S, Ćalić D (1998) Plant regeneration from uninuclear microspore suspension cultures of Aesculus hippocastanum L. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st Century. Kluwer Publishers, The Netherlands, pp 201–204

    Google Scholar 

  37. Robichaud R, Lessard V, Merkle SA (2004) Treatments affecting maturation and germination of American chestnut somatic embryos. J Plant Physiol 161:957–969

    PubMed  Article  CAS  Google Scholar 

  38. Salajová T, Jásik J, Kormuták A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530

    Google Scholar 

  39. Shi X, Dai X, Liu G, Bao M (2009) Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Trees 23:1033–1042

    Article  Google Scholar 

  40. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35

    Article  CAS  Google Scholar 

  41. Tomiczek C, Krehan H (1998) The horse-chestnut leafmining moth (Cameraria ohridella): a new pest in Central Europe. J Arboric 24:144–148

    Google Scholar 

  42. Troch V, Werbrouck S, Geelen D, Van Labeke MC (2009) Optimization of horse chestnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tiss Org Cult 98:115–123

    Article  CAS  Google Scholar 

  43. Velagić-Habul E, Lazarev V, Custović H (1991) Evaluation of emission of SO2 and occurrence of pathogenic fungi of forest tree species. Plant Prot 42:153–164

    Google Scholar 

  44. Wilkinson JA, Brown AMG (1999) Horse chestnut—Aesculus hippocastanum: potential applications in cosmetic skin-care products. Int J Cosmetic Sci 21:437–447

    Article  CAS  Google Scholar 

  45. Yang X, Zhao J, Cui Y, Liu X, Ma C, Hattori M, Zhaung L (1999) Anti HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J Nat Prod 62:1510–1513

    PubMed  Article  CAS  Google Scholar 

  46. Zhang X, Wu Q, Li X, Zheng S, Wang S, Guo L, Zhang L, Custers JBM (2011) Haploid plant production in Zantedeschia aethiopica ‘Hong Gan’ using anther culture. Sci Hort 129:335–342

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Serbia, grant N0. 173015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dušica Ćalić.

Additional information

Communicated by D. Treutter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ćalić, D., Bohanec, B., Devrnja, N. et al. Impact of abscisic acid in overcoming the problem of albinism in horse chestnut androgenic embryos. Trees 27, 755–762 (2013). https://doi.org/10.1007/s00468-012-0830-4

Download citation

Keywords

  • ABA
  • Aesculus hyppocastanum
  • Albinism
  • Anther culture
  • Microspore culture