Skip to main content

Advertisement

Log in

Proteomic and physiological analyses reveal detoxification and antioxidation induced by Cd stress in Kandelia candel roots

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The heavy metal Cadmium (Cd), added to the water bodies through weathering of rocks and human activities, constitutes one of the major environmental pollutants toxic to plants. This study examines the proteome changes in roots of actively growing Kandelia candel (L.) Druce when challenged with Cd. This mangrove-like species proliferates in estuaries and bays and is a potential choice for phytoremediation of Cd. A total of 53 proteins were up- or down-regulated following a short-term Cd treatment. The identities of the differentially expressed proteins were determined by MALDI-TOF/TOF. Approximately half of the up-regulated proteins are involved in oxidative response, including antioxidant enzymes, enzymes required for glutathione biosynthesis, enzymes in TCA and PPP cycles for generating ATP, NADH and NADPH. These results support the prediction that a prompt antioxidative response is necessary for the reduction of the oxidative stress caused by Cd and set the stage for further investigating of Cd up-regulated proteins in Kandelia candel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan N, Lee SH, Lee DG, Lee H et al (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  PubMed  CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C et al (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Alongi DM, Wattayakorn G, Boyle S (2004) Influence of roots and climate on mineral and trace element storage and flux in tropical mangrove soils. Biogeochemistry 69:105–123

    Article  CAS  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE et al (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  PubMed  CAS  Google Scholar 

  • Badarudeen A, Damodaran KT, Sajan K, Padmalal D (1996) Texture and geochemistry of the sediments of a tropical mangrove ecosystem, southwest coast of India. Environ Geol 27:164–169

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caregnato FF, Koller CE, MacFarlane GR, Moreira JCF (2008) The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 56:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Carpentier SC, Wittem E, Laukens K, eckers PD, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  PubMed  CAS  Google Scholar 

  • Comparot S, Lingiah G, Martin T (2003) Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. J Exp Bot 54:595–604

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M et al (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  PubMed  CAS  Google Scholar 

  • Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    Article  PubMed  CAS  Google Scholar 

  • Devriese M, Tsakaloudi V, Garbayo I, León R, Vílchez C, Vigara J (2001) Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiol Biochem 39:443–448

    Article  CAS  Google Scholar 

  • Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167

    PubMed  CAS  Google Scholar 

  • Drazkiewicz ME, Polit S, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202

    Article  CAS  Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula × P. alba (717-1B4 genotype): Leaf and cambial proteome changes induced by cadmium2+. Proteomics 10:349–368

  • Ferl RJ (2004) 14-3-3 proteins: regulation of signal-induced events. Physiol Plant 120:173–178

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants. Plant Signal Behav 6(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physical function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  Google Scholar 

  • Harbison P (1986) Mangrove medusa sink and source for trace metals. Vierh Mar Pollut Bull 17:273–276

    Article  Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Hudemann C, Lillig CH et al (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc 33:1375–1377

    Article  CAS  Google Scholar 

  • Hradilová J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431

    Article  PubMed  Google Scholar 

  • Huang GY, Wang YS, Sun CC, Dong JD, Sun ZX (2010) The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candeland Bruguiera gymnorrhiza). Oceanol Hydrobiol Stud 39:11–25

    Article  CAS  Google Scholar 

  • Kerkeb L, Venema K, Donaire JP, Rosales MPR (2002) Enhanced H +/ATP coupling ratio of H+-ATPase and increased 14-3-3 protein content in plasma membrane of tomato cells upon osmotic shock. Physiol Plant 116:37–41

    Article  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    Google Scholar 

  • Lacerda LD, Carvalho CEV, Tanizaki KF, Ovalle AR, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257

    Article  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ et al (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM et al (2005) Peroxisomal monodehydroascorbate reductase Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138(4):2111–2123

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu YZ, Zheng SQ, Jiang JM et al (2010) Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion. Planta 231:847–860

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewicz M, Kata IM, Aksamit A, Oszmianhski J, Szopa J (2002) 14-3-3 protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci 163:125–130

    Article  CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (1999) Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia narina (Forsk.) Vierh. Environ Exp Bot 41:167–175

    Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240

    Article  PubMed  CAS  Google Scholar 

  • Machado W, Moscatelli M, Rezende LG (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast. Brazil Environ Pollut 120:455–461

    Article  CAS  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    PubMed  CAS  Google Scholar 

  • Montrichard F, Alkhalfioui F, Yano H, Vensel WH et al (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Patterson BD, Payne LA, Chen Y, Graham D (1984) An inhibitor of catalase induced by cold chilling-sensitive plants. Plant Physiol 76:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    Article  PubMed  CAS  Google Scholar 

  • Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34:257–267

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    CAS  Google Scholar 

  • Ristic Z, Momcilovic I, Fu J, Callegari E, DeRidder BP (2007) Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J Plant Physiol 164:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Roberts MR (2003) 14-3-3 Proteins find new partners in plant cell signalling. Trends Plant Sci 8:218–223

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Celma J, Rellan-Alvarez R, Abadia A, Abadia J, Lopez-Millan AF (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteomics 73:1694–1706

    Article  PubMed  CAS  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A et al (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F et al (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben JP et al (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Mishr RN, Agarwal PK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Comm 320:523–530

    Article  PubMed  CAS  Google Scholar 

  • Tam NFY, Wong YS (1996) Retention and distribution of heavy metals in mangrove soils receiving waste water. Environ Pollut 94:283–291

    Article  PubMed  CAS  Google Scholar 

  • Tam NFY, Wong YS (1997) Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia 352:67–75

    Article  CAS  Google Scholar 

  • Tamoi M, MiyazakiT Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504–513

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharm 238(3):221–239

    Article  Google Scholar 

  • Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219

    CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N et al (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  PubMed  CAS  Google Scholar 

  • Visioli G, Marmiroli M, Marmiroli N (2010) Two-dimensional liquid chromatography technique coupled with mass spectrometry analysis to compare the proteomic response to cadmium stress in plants. J Biomed Biotechnol 2010:1–10

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biologia Platarum 55(1):125–132

    Article  Google Scholar 

  • Wolucka BA, Van M (2003) GDP-mannose 30,50-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  PubMed  CAS  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14l in cotton leads to a ‘stay-green’ phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Tam NFY, Wong YS, Lu CY (2003) Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ Exp Bot 49:209–221

    Article  Google Scholar 

  • Yim MW, Tam NFY (1999) Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activitews. Marine Pollut Bull 39:179–186

    Article  CAS  Google Scholar 

  • You XR, Wang LX, Liang WY, Gai YH, Wang XY, Chen W (2012) Floral reversion mechanism in longan revealed by proteomic and anatomic analyses. J Proteomics 75:1099–1118

    Article  PubMed  CAS  Google Scholar 

  • Zechmann B, Müller M, Zellnig G (2008) Modified levels of cysteine affect glutathione metabolism in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, The Netherlands, pp 193–206

    Chapter  Google Scholar 

  • Zhang J, Cui S, Li J, Kirkham MB (1995) Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol Biochem 33:567–575

    CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  PubMed  CAS  Google Scholar 

  • Zheng FZ, Lin P, Zheng WJ (1994) Study on the tolerance of Kandelia candel mangrove seedlings to cadmium. Acta Ecologica Sinica 14(4):408–414 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Grant of China (Award No. 31070542) and Natural Science Foundation of Fujian Province, China (Award No. 2010J01067). We also would like to thank Dr. Erin Irish of the Department of Biology at The University of Iowa (USA) for the critical reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Communicated by H. Rennenberg.

Z.-X. Weng and L.-X. Wang contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental material 1 (DOC 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, ZX., Wang, LX., Tan, Fl. et al. Proteomic and physiological analyses reveal detoxification and antioxidation induced by Cd stress in Kandelia candel roots. Trees 27, 583–595 (2013). https://doi.org/10.1007/s00468-012-0811-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0811-7

Keywords

Navigation