Skip to main content
Log in

Phytoalexin formation in fire blight-infected apple

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Biosynthesis of phytoalexins is a plant defence strategy against pathogens. Shoots of the apple (Malus × domestica) cultivar ‘Holsteiner Cox’ formed biphenyls and dibenzofurans when inoculated with the fire blight bacterium, Erwinia amylovora. The phytoalexins were only present in the transition zone of stems, whereas the leaves were devoid of the defence compounds. The scaffold of the phytoalexins is formed by biphenyl synthase (BIS), a type III polyketide synthase. In apple, BIS is encoded by a gene family, members of which fall into four subfamilies. Representative BIS cDNAs were cloned from fire blight-infected shoots of ‘Holsteiner Cox’ and functionally expressed. The preferred starter substrates were benzoyl-CoA and salicoyl-CoA, leading to the formation of 3,5-dihydroxybiphenyl and 4-hydroxycoumarin, respectively, in the presence of malonyl-CoA as extender molecule. The four subfamilies were differentially regulated after inoculation of shoots with E. amylovora. The BIS3 gene was expressed in stems, with maximum transcript levels in the transition zone. The BIS3 protein was immunochemically localized to the parenchyma of the bark. Dot-shaped immunofluorescence was restricted to the junctions between neighbouring cortical parenchyma cells. Leaves contained transcripts for BIS2 which, however, were not translated into immunodetectable BIS protein. The understanding of phytoalexin metabolism may aid in improving apple resistance to fire blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Beerhues L, Liu B (2009) Biosynthesis of biphenyls and benzophenones—Evolution of benzoic acid-specific type III polyketide synthases in plants. Phytochemistry 70:1719–1727

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Billing E (2011) Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol 60:178–189

    Article  Google Scholar 

  • Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent Erwinia amylovora. CABI Publishing, Wallingford, pp 37–53

    Chapter  Google Scholar 

  • Borejsza-Wysocki W, Lester C, Attygalle AB, Hrazdina G (1999) Elicited cell suspension cultures of apple (Malus × domestica) cv. Liberty produce biphenyl phytoalexins. Phytochemistry 50:231–235

    Article  CAS  Google Scholar 

  • Chizzali C, Beerhues L (2012) Phytoalexins of the Pyrinae: biphenyls and dibenzofurans. Beilstein J Org Chem 8:613–620

    Article  PubMed  CAS  Google Scholar 

  • Chizzali C, Khalil MNA, Beuerle T, Schuehly W, Richter K, Flachowsky H, Peil A, Hanke MV, Liu B, Beerhues L (2012a) Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestica cv. ‘Holsteiner Cox’ and Pyrus communis cv. ‘Conference’. Phytochemistry 77:179–185

    Article  PubMed  CAS  Google Scholar 

  • Chizzali C, Gaid MM, Belkheir AK, Hänsch R, Richter K, Flachowsky H, Peil A, Hanke MV, Liu B, Beerhues L (2012b) Differential expression of biphenyl synthase gene family members in fire blight-infected apple cv. ‘Holsteiner Cox’. Plant Physiol 158:864–875

    Article  PubMed  CAS  Google Scholar 

  • Cortez DAG, Filho BAA, Nakamura CV, Filho BPD, Marston A, Hostettmann K (2002) Antibacterial activity of a biphenyl and xanthones from Kielmeyera coriacea. Pharm Biol 40:485–489

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2010) FAOSTAT home page. http://faostat.fao.org/site/567/default.aspx#ancor

  • Grayer RJ, Kokubun T (2001) Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G (2003) Response of scab-susceptible (McIntosh) and scab-resistant (Liberty) apple tissues to treatment with yeast extract and Venturia inaequalis. Phytochemistry 64:485–492

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G, Borejsza-Wysocki W, Lester C (1997) Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathol 87:868–876

    Article  CAS  Google Scholar 

  • Hüttner C, Beuerle T, Scharnhop H, Ernst L, Beerhues L (2010) Differential effect of elicitors on biphenyl and dibenzofuran formation in Sorbus aucuparia cell cultures. J Agric Food Chem 58:11977–11984

    Article  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kemp MS, Holloway PJ, Burden RS (1985) 3β-19α-dihydroxy-2-oxours-12-en-28-oic acid: a pentacyclic triterpene induced in the wood of Malus pumila Mill. infected with Chondrostereum purpureum (Pers. ex Fr.) Pouzar. and a constituent of the cuticular wax of apple fruits. J Chem Res (M); 1848–1876

  • Kokubun T, Harborne JB (1994) A survey of phytoalexin induction in leaves of the Rosaceae by copper ions. Z Naturforsch C J Biosci 49:628–634

    Google Scholar 

  • Kokubun T, Harborne JB (1995) Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae): biphenyls or dibenzofurans. Phytochemistry 40:1649–1654

    Article  CAS  Google Scholar 

  • Kokubun T, Harborne JB, Eagles J, Waterman PG (1995) Dibenzofuran phytoalexins from the sapwood tissue of Photinia, Pyracantha and Crataegus species. Phytochemistry 39:1033–1037

    Article  CAS  Google Scholar 

  • Lee JY, Lu H (2011) Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–210

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Beuerle T, Klundt T, Beerhues L (2004) Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia. Planta 218:492–496

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Raeth T, Beuerle T, Beerhues L (2007) Biphenyl synthase, a novel type III polyketide synthase. Planta 225:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Raeth T, Beuerle T, Beerhues L (2010) A novel 4-hydroxycoumarin biosynthetic pathway. Plant Mol Biol 72:17–25

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata–bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    Article  PubMed  CAS  Google Scholar 

  • Miyakodo M, Watanabe K, Ohno N, Nonaka F, Morita A (1985) Isolation and structural determination of eriobofuran, a new dibenzofuran phytoalexin from leaves of loquat, Eriobotrya japonica L. J Pest Sci 10:101–106

    Article  Google Scholar 

  • Nissinen RM, Ytterberg AJ, Bogdanove AJ, van Wijk KJ, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Path 8:55–67

    Article  CAS  Google Scholar 

  • Oh CS, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    Article  PubMed  CAS  Google Scholar 

  • Schröder J (1999) The chalcone/stilbene synthase-type family of condensing enzymes. In: Sankawa U (ed) Comprehensive natural products chemistry, vol 1. Elsevier, Amsterdam, pp 749–771

    Chapter  Google Scholar 

  • Shiu WKP, Gibbons S (2009) Dibenzofuran and pyranone metabolites from Hypericum revolutum ssp. revolutum and Hypericum choisianum. Phytochemistry 70:403–406

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Ishiguri Y, Nonaka F, Morita A (1982) Isolation and identification of aucuparin as a phytoalexin from Eriobotrya japonica L. Agric Biol Chem 46:567–568

    Article  CAS  Google Scholar 

  • Widyastuti SM, Nonaka F, Watanabe K, Maruyama E, Sako N (1991) Accumulation and antifungal spectrum of 4′-methoxyaucuparin as a new phytoalexin in Rhaphiolepsis umbellata Makino. Ann Phytopath Soc Jpn 57:232–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants from the Deutsche Forschungsgemeinschaft (DFG) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Beerhues.

Additional information

Communicated by D. Treutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chizzali, C., Gaid, M.M., Belkheir, A.K. et al. Phytoalexin formation in fire blight-infected apple. Trees 27, 477–484 (2013). https://doi.org/10.1007/s00468-012-0808-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0808-2

Keywords

Profiles

  1. Robert Hänsch