Skip to main content
Log in

Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Citrus plants originate from southeastern Asia, in a large area with various climates characterized by a broad range of temperatures. Some species have been diversified in temperate climates, others in subtropical climates. Temperature is assumed to be a key factor in citrus species adaptation and diversification of basic cellular functions. In a field experiment, the tolerance of the three fundamental Citrus species C. medica L., C. reticulata Blanco and C. maxima (Burm.) Merr., and Fortunella japonica (Thunb.) Swing. to photooxidative stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv/Fm). In addition, seasonal changes in oxidative status, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant metabolites (ascorbate and glutathione) were monitored. Mandarin and pummelo appeared to be the most tolerant, showing the lowest down-regulation of photosynthetic parameters, and the lowest accumulation of oxidized compounds associated with efficiency of their antioxidant system. Kumquat showed intermediate behaviour, with a large diminution of photosynthetic parameters and marked accumulation of hydrogen peroxide, whereas the malondialdehyde content remained low, with a strong induction of glutathione synthesis. Finally, citron appeared to be the most sensitive genotype with a marked decrease in photosynthetic performance, the largest accumulation of oxidative parameters, insufficient induction of antioxidant enzymes and down-regulation of ascorbate and glutathione synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  PubMed  CAS  Google Scholar 

  • Anjum MA (2010) Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiol Plant 32:951–959

    Article  CAS  Google Scholar 

  • Arbona V, Hossain Z, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142

    Article  CAS  Google Scholar 

  • Asada K (1984) Chloroplasts—formation of active oxygen species. Methods Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180:726–732

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brumos J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sanchez G, Iglesias DJ, Lopez-Climent MF, Gomez-Cadenas A, Talon M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics 9:293–309

    Article  PubMed  CAS  Google Scholar 

  • de Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, Bespalhok JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Article  Google Scholar 

  • Drew DP, Lunde C, Lahnstein J, Fincher GB (2007) Heterologous expression of cDNAs encoding monodehydroascorbate reductases from the moss, Physcomitrella patens and characterization of the expressed enzymes. Planta 225:945–954

    Article  PubMed  CAS  Google Scholar 

  • Fanciullino AL, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P (2006) Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agric Food Chem 54:4397–4406

    Article  PubMed  CAS  Google Scholar 

  • Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Genomics 287:77–94

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Prot 2:871–874

    Article  CAS  Google Scholar 

  • Gmitter FG Jr, Hu XL (1990) The possible role of Yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ Bot 44:267–277

    Article  Google Scholar 

  • Grover A, Sabat SC, Mohanty P (1986) Effect of temperature on photosynthetic activities of senescing detached wheat leaves. Plant Cell Physiol 27:117–126

    CAS  Google Scholar 

  • Guy CL (1990) Cold-acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1:231–242

    PubMed  CAS  Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low-temperature. Plant Physiol 98:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Hossain Z, Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A (2009) Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J Plant Physiol 166:1391–1404

    Article  PubMed  CAS  Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol 23:119–127

    Article  PubMed  Google Scholar 

  • Krause GH, Briantais JM, Vernotte C (1983) Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77-K.1. delta-pH-dependent quenching. Biochim Biophys Acta 723:169–175

    Article  CAS  Google Scholar 

  • Lim CS, Kang SM, Cho JL, Gross KC (2009) Antioxidizing enzyme activities in chilling-sensitive and chilling-tolerant pepper fruit as affected by stage of ripeness and storage temperature. J Am Soc Hortic Sci 134:156–163

    Google Scholar 

  • Mabberley DJ (2004) Citrus (Rutaceae): a review of recent advances in etymology, systematics and medical applications. Blumea 49:481–498

    Article  Google Scholar 

  • Mai J, Herbette S, Vandame M, Cavaloc E, Julien JL, Ameglio T, Roeckel-Drevet P (2010) Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis. Tree Physiol 30:1391–1402

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Medina CL, Souza RP, Machado EC, Ribeiro RV, Silva JAB (2002) Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic 96:115–125

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    PubMed  CAS  Google Scholar 

  • Moore GA, Tozlu I, Champ K, Weber CA, Guy CL (2000) Molecular genetic studies on cold acclimation and freezing tolerance in citrus. In: Proceedings of the international society of citriculture, Orlando, Florida, USA, pp 405–409

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Oberley LW, Spitz DR (1984) Assay of superoxide dismutase activity in tumor-tissue. Methods Enzymol 105:457–464

    Article  PubMed  CAS  Google Scholar 

  • Oquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  Google Scholar 

  • Palatnik JF, Valle EM, Federico ML, Gomez LD, Melchiorre MN, Paleo AD, Carrillo N, Acevedo A (2002) Status of antioxidant metabolites and enzymes in a catalase-deficient mutant of barley (Hordeum vulgare L.). Plant Sci 162:363–371

    Article  CAS  Google Scholar 

  • Polle A, Rennenberg H (1992) Field studies on Norway spruce trees at high-altitudes: II. Defense systems against oxidative stress in needles. New Phytol 121:635–642

    Article  CAS  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    Article  PubMed  CAS  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Prot 1:3159–3165

    Article  CAS  Google Scholar 

  • Ribeiro RV, Machado EC (2007) Some aspects of citrus ecophysiology in subtropical climates: re-visiting photosynthesis under natural conditions. Braz J Plant Physiol 19:393–411

    Article  CAS  Google Scholar 

  • Ribeiro RV, Machado EC, Santos MG, Oliveira RF (2009) Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ Exp Bot 66:203–211

    Article  CAS  Google Scholar 

  • Santos C, Ribeiro R, Magalhes JR, Machado D, Machado E (2011) Low substrate temperature imposes higher limitation to photosynthesis of orange plants as compared to atmospheric chilling. Photosynthetica 49:546–554

    Article  Google Scholar 

  • Scora RW (1975) Symposium on biochemical systematics, genetics and origin of cultivated plants: 9. History and origin of citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  • Sevillano L, Sanchez-Ballesta MT, Romojaro F, Flores FB (2009) Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric 89:555–573

    Article  CAS  Google Scholar 

  • Shang W, Feierabend J (1999) Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light. Photosynth Res 59:201–213

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione-reductase in crude tissue-homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  PubMed  CAS  Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and orange relatives in the orange subfamily. In: Reuther W, Webber HJ, Batchelor DL (eds) Citrus Industry, vol 1. California University Press, Berkeley, pp 190–340

    Google Scholar 

  • Verhoeven AS, Swanberg A, Thao M, Whiteman J (2005) Seasonal changes in leaf antioxidant systems and xanthophyll cycle characteristics in Taxus × media growing in sun and shade environments. Physiol Plant 123:428–434

    Article  CAS  Google Scholar 

  • Veste M, Ben-Gal A, Shani U (2000) Impact of thermal stress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. Acta Hort 143–149

  • Wang X, Peng Y, Singer JW, Fessehaie A, Krebs SI, Arora R (2009) Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Sci 177:607–617

    Article  CAS  Google Scholar 

  • Webber HJ, Reuther W, Lawton HW (1967) History and development of the citrus industry. In: Reuther W, Webber H, Batchelor L (eds) The Citrus lndustry, vol 1., Division of Agricultural SciencesUniversity of California, Riverside, pp 1–39

    Google Scholar 

  • Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees. doi:10.1007/s00468-012-0699-2

  • Yelenosky G (1985) Cold hardiness in Citrus. Hortic Rev 7:201–238

    Google Scholar 

  • Yelenosky G, Guy CL (1989) Freezing tolerance of citrus, spinach, and petunia leaf tissue—osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiol 89:444–451

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Collectivité Territoriale de Corse (CTC) for the financial support of this study. We are grateful to Anne-Laure Fanciullino and Isabelle Poggi for their assistance for leaf harvesting. We particularly thank Isabelle Tur and Jérôme Barbaggio for technical assistance in the grinding of leaves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Giannettini.

Additional information

Communicated by W. Bilger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santini, J., Giannettini, J., Pailly, O. et al. Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress. Trees 27, 71–83 (2013). https://doi.org/10.1007/s00468-012-0769-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0769-5

Keywords

Navigation