Skip to main content

Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters

Abstract

In the search of timber species being tolerant towards summer droughts, which are expected to be more frequent in future, Douglas-fir is often discussed as a potential alternative for spruce in Central Europe. To assess physiological and growth reactions of Douglas-fir provenances towards climate- and weather-related environmental conditions we took advantage of a provenance trial with three sites in south-western Germany located along an elevation gradient. We examined six different provenances of Douglas-fir from North America for oxygen (δ18O) and carbon (δ13C) stable isotope composition in tree rings as well as for radial increment for a 7 year period and long-term height growth. Our results show that different Douglas-fir provenances clearly vary in their drought sensitivity at the driest and warmest site in the valley as shown by the radial growth decline in the extreme dry and hot year 2003. The growth decline in the provenances Pamelia Creek, Cameron Lake, Duncan Paldi and Conrad Creek could be clearly attributed to a reduction in stomatal conductance as assessed by the relations between δ18O and δ13C in the tree rings. These responses were not related to the long-term average climate at the places of origin of the provenances and the provenances with the lowest long-term (height) growth potential were the ones least affected in radial increment by the extreme drought of 2003. When selecting suitable Douglas-fir provenances, which are adapted to the climatic conditions projected for the future we thus might need to take into account the trade-off between the adaptation to extreme drought periods and the long-term growth performance. Site-specific evaluations of the probability of extreme drought events are thus needed to select the appropriate provenances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000a) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637

    CAS  Google Scholar 

  • Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000b) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Peclet effect. Plant Physiol 123:671–679

    PubMed  Article  CAS  Google Scholar 

  • Bayerische Landesanstalt für Wald und Forstwirtschaft (2004) Waldzustandsbericht 2004: Bayerisches Staatsministerium für Landwirtschaft und Forsten, Bayerische Landesanstalt für Wald und Forstwirtschaft LWF

  • Brandes E, Wenninger J, Koeniger P, Schindler D, Rennenberg H, Leibundgut C, Mayer H, Gessler A (2007) Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter. Plant Cell Environ 30:113–127

    PubMed  Article  CAS  Google Scholar 

  • Brandl H (1989) Ergänzende Untersuchungen zur Ertragslage der Baumarten Fichte, Kiefer, Buche und Eiche in Baden-Württemberg. Allgemeine Forst-und Jagd Zeitung 160:91–99

    Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625–644

    Article  Google Scholar 

  • Brenninkmeijer C (1983) Deuterium, oxygen-18 and carbon-13 in tree rings and peat deposits in relation to climate. University of Groningen, Groningen

    Google Scholar 

  • Brugnoli E, Hubick KT, vonCaemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C-3 plants and the ratio of intercellular and atmospheric partial pressures of carbon-dioxide. Plant Physiol 88:1418–1424

    PubMed  Article  CAS  Google Scholar 

  • Campbell RK (1991) Soils, seed-zone maps, and physiography: guidelines for seed transfer of Douglas-Fir in Southwestern Oregon. Forest Sci 37:973–986

    Google Scholar 

  • Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiol 131:1544–1554

    PubMed  Article  CAS  Google Scholar 

  • Cernusak LA, Farquhar GD, Pate JS (2005) Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiol 25:129–146

    PubMed  Article  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    PubMed  Article  CAS  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) In: Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Lischi and Figli, Spoleto pp 9–130

  • Cuntz M, Ogee J, Farquhar GD, Peylin P, Cernusak LA (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ 30:892–909

    PubMed  Article  CAS  Google Scholar 

  • Dean CA (2007) Genotype and population performances and their interactions for growth of coastal Douglas-Fir in Western Washington. Forest Sci 53:463–472

    Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124:319–333

    Article  Google Scholar 

  • Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H 182 O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52

    PubMed  Article  CAS  Google Scholar 

  • Ehring A, Klädtke J, Yue C (1999) Ein interaktives Programm zur Erstellung von Bestandeshöhenkurven. Centralblatt für das gesamte Forstwesen 116:47–52

    Google Scholar 

  • Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32:293–303

    Article  CAS  Google Scholar 

  • Farquhar GD, O’ Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farquhar GD, Barbour MM, Henry BK (1998) Interpretation of oxygen isotope composition of leaf material. In: Griffiths H (ed) Stable Isotopes—integration of biological, ecological and geochemical processes. Bios Scientific Publishers Ltd., Oxford, pp 27–74

    Google Scholar 

  • Franklin JF, Dyrness CT (1973) Natural vegetation of Oregon and Washington. Pacific Northwest Forest and Range Experiment Station. US Forest Service, U.S.Dep. of Agr, Portland

    Google Scholar 

  • Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manage 256:1151–1159

    Article  Google Scholar 

  • Ge ZM, Zhou XA, Kellomaki S, Wang KY, Peltola H, Vaisanen H, Strandman H (2010) Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland. Ecol Model 221:1731–1743

    Article  Google Scholar 

  • Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard R (2009a) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree ring archive. Plant Cell Environ 32:780–795

    PubMed  Article  CAS  Google Scholar 

  • Gessler A, Löw M, Heerdt C, de Beeck MO, Schumacher J, Grams TEE, Bahnweg G, Ceulemans R, Werner H, Matyssek R, Rennenberg H, Haberer K (2009b) Within-canopy and ozone fumigation effects on δ13C and Δ18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters. Tree Physiol 29:1349–1365

    PubMed  Article  CAS  Google Scholar 

  • Grams TEE, Kozovits AR, Haberle KH, Matyssek R, Dawson TE (2007) Combining delta C-13 and delta O-18 analyses to unravel competition, CO2 and O-3 effects on the physiological performance of different-aged trees. Plant, Cell Environ 30:1023–1034

    Article  CAS  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308

    Article  Google Scholar 

  • Gugger PF, Sugita S, Cavender-Bares J (2010) Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record. Mol Ecol 19:1877–1897

    PubMed  Article  CAS  Google Scholar 

  • Hanewinkel M, Cullmann D, Michiels H-G (2010) Veränderte Bewertung infolge Klimawandel—Künftige Baumarteneignung für Fichte und Buche in Südwestdeutschland. AFZ-Der Wald 65:30–33

    Google Scholar 

  • Hattenschwiler S, Schweingruber FH, Korner C (1996) Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378

    Article  CAS  Google Scholar 

  • Heidingsfelder A, Knoke T (eds) (2004) Douglasie versus Fichte—ein betriebswirtschaftlicher Leistungsvergleich auf der Grundlage des Provenienzversuches Kaiserslautern. Schriften zur Forstökonomie, 26. J.D. Sauerländer’s Verlag, Frankfurt/M, p 111

    Google Scholar 

  • Hermann RK, Lavender DP (1999) Douglas-fir planted forests. New Forest 17:53–70

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007 In: Solomon, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York, p 996

  • Jacob D, Lorenz P (2009) Sensitivity of future trends and variability in the hydrological cycle to different IPCC SRES emission scenarios—a case study for the Baltic Sea Region. Boreal Environ Res 14:100–113

    Google Scholar 

  • Jacob D, Barring L, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Kenk G, Hradetzky J (1984) Behandlung und Wachstum der Douglasien in Baden-Württemberg. Ministerium für Ernährung, Landwirtschaft, Umwelt und Forsten, Freiburg

    Google Scholar 

  • Kenk G, Thren M (1984) Ergebnisse verschiedener Douglasienprovenienzversuche in Baden-Württemberg. Teil I: Der Internationale Douglasien-Provenienzversuch 1958. Allgemeine Forst und Jagdzeitung 155:165–184

    Google Scholar 

  • Kleinschmit J, Bastien JC (1992) IUFRO’s role in Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco) tree improvement. Silvae Genetica 41:161–173

    Google Scholar 

  • Leavitt SW (1993) Seasonal C-13/C-12 changes in tree rings—species and site coherence, and a possible drought influence. Can J Forest Res-Revue Canadienne de Recherche Forestiere 23:210–218

    Article  CAS  Google Scholar 

  • Leavitt SW (2002) Prospects for reconstruction of seasonal environment from tree-ring delta C-13: baseline findings from the Great Lakes area, USA. Chem Geol 192:47–58

    Article  CAS  Google Scholar 

  • Lebourgeois F, Rathgeber CBK, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376

    Article  Google Scholar 

  • Levin I, Graul R, Trivett N (1995) Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus Ser B Chem Phys Meteorol pp 23–34

  • Livingston NJ, Spittlehouse DL (1996) Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant Cell Environ 19:768–774

    Article  Google Scholar 

  • Makinen H, Nojd P, Mielikainen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce Picea abies (L.) Karst. in southern Finland. Trees Struct Func 15:177–185

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23:771–801

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095

    Article  Google Scholar 

  • Meining S, Schröter H, Wilpert KV (2004) Waldzustandsbericht 2004. Freiburg: Forstliche Versuchs- und Forschungsanstalt Baden- Württemberg

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699

    Article  Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15

    Article  CAS  Google Scholar 

  • Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    PubMed  Article  CAS  Google Scholar 

  • Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140

    Article  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    PubMed  Article  CAS  Google Scholar 

  • Saurer M (2003) The influence of climate on the oxygen isotopes in tree rings. Isot Environ Health Stud 39:105–112

    Article  CAS  Google Scholar 

  • Saurer M, Aellen K, Siegwolf R (1997) Correlating delta C-13 and delta O-18 in cellulose of trees. Plant Cell Environ 20:1543–1550

    Article  Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Article  Google Scholar 

  • Schleser GH, Helle G, Lucke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quatern Sci Rev 18:927–943

    Article  Google Scholar 

  • Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454

    PubMed  Article  Google Scholar 

  • Sternberg L, Deniro MJ (1983) Bio-geochemical implications of the isotopic equilibrium fractionation factor between oxygen atoms of acetone and water. Geochim Cosmochim Acta 47:2271–2274

    Article  CAS  Google Scholar 

  • Strehlke B (1959) Die Ernte von Douglasiensamen in USA und Kanada-Folgerungen für die deutsche Forstwirtschaft. Der Forst-und Holzwirt 14:295–300

    Google Scholar 

  • Teuffel Kv (2010) Naturnaher Waldbau und Klimawandel. AFZ-Der Wald 65:33–36

    Google Scholar 

  • Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of delta C-13 in subalpine spruces (Lotschental, Swiss Alps)—a case study with respect to altitude, exposure and soil moisture. Tellus Series B-Chemical and Physical Meteorology 53:593–611

    Article  Google Scholar 

  • Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    PubMed  Article  CAS  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Yue C, Kohnle U, Hanewinkel M, Klädtke J (2011) Extracting environmentally driven growth trends from diameter increment series based on a multiplicative decomposition model. Can J For Res 41:1577–1589

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG) under contract numbers GE1090/7-1, EN829/4-1, EN829/5-1 and by the Forstliche Versuchs-und Forschungsanstalt (FVA) Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Gessler.

Additional information

Communicated by A. Braeuning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 241 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jansen, K., Sohrt, J., Kohnle, U. et al. Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters. Trees 27, 37–52 (2013). https://doi.org/10.1007/s00468-012-0765-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0765-9

Keywords

  • Stable isotopes
  • Intrinsic water use efficiency
  • Stomatal conductance