Skip to main content
Log in

Branch cuvettes as means of ozone risk assessment in adult forest tree crowns: combining experimental and modelling capacities

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The branch autonomy principle has been referred to extensively for using branch cuvettes as a technique of studying ozone (O3) effects within the canopy of adult forest trees. However, this principle may not hold in general regarding biochemical interactions between O3-impacted branches exposed inside cuvettes and neighbouring crown parts under the unchanged ambient O3 regime. After reviewing relevant cuvette studies conducted to date, we will provide evidence that cuvette-exposed branches may serve, given awareness of outlined pre-requisites and restrictions, as surrogates for examining the crown-level response of trees to elevated O3 regimes. Such a conclusion is based on the defence metabolism of branches, which seems to be autonomous to some extent from neighbouring crown sections. Cuvette studies may, therefore, be used to derive dose response functions as measures of O3 sensitivity. On such grounds, also validation and improvement of stomatal O3 uptake modelling becomes feasible. The branch-level approach, however, does not substitute whole-tree free-air O3 fumigation and related flux assessments, as branches in view of representativeness and boundary layer characteristics represent one stage in scaling O3 flux between leaf and tree level. Branch level-based flux scaling should be backed, therefore, by independent trunk sap-flow assessment techniques that offer derivation of FO3 at the whole-tree level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Conversion factors for O3 from nl l−1 into µg m−3 (F) and vice versa (B) as dependent from altitudinal changes in mean annual air pressure (P) and mean annual air temperature (T). From Bucher et al. (1986).

     

    Altitude (m)

    P (hPa)

    T (°C)

    F

    B

    0

    1,013

    12

    2.05

    0.49

    500

    950

    9

    1.95

    0.51

    1,000

    900

    6

    1.86

    0.54

    1,500

    850

    3

    1.78

    0.56

    2,000

    800

    0

    1.69

    0.59

    2,500

    750

    −3

    1.60

    0.62

    3,000

    700

    −6

    1.51

    0.66

    Conversion factor from nl l−1 into µg m−3:

    F = (M w/22.4) × (T 0/T) × (p/p 0)

    M w = molecular weight for O3 = 48 g

    22.4 = gas volume

    T 0 = 273.15 K

    T = air temperature in K

    p = actual air pressure in hPa

    p 0 = 1013.25 hPa.

  2. LRTAP Convention (2010): “The projected leaf area (PLA, m2) is the total area of the sides of the leaves that are projected towards the sun. PLA is in contrast to the total leaf are, which considers both sides of the leaves. For horizontal leaves the total leaf area is simple 2 × PLA.”

References

  • Bucher J, Landolt W, Bleurer P (1986) Ozonessungen auf dem Rötiboden ob Göschenen UR. Schweiz Z Forstwe 137:607–621

    Google Scholar 

  • Dobson MC, Taylor G, Freer-Smith PH (1990) The control of ozone uptake by Picea abies (L.) Karst. and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytol 116:465–474

    Article  CAS  Google Scholar 

  • Emberson LD, Wieser G, Ashmore MR (2000a) Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environ Pollut 109:393–402

    Article  PubMed  CAS  Google Scholar 

  • Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J-P (2000b) Modelling stomatal flux across Europe. Environ Pollut 109:403–413

    Article  PubMed  CAS  Google Scholar 

  • Götz B (1996) Ozon und Trockenstreß. Wirkungen auf den Gaswechsel von Fichte. Libri Botanici 16, IHW-Verlag München

  • Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia— implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668

    PubMed  CAS  Google Scholar 

  • Grulke NE, Miller PR, Scioli D (1996) Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone. Tree Physiol 16:575–581

    Article  PubMed  CAS  Google Scholar 

  • Grulke NE, Paoletti E, Heath RL (2007) Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ Pollut 146:640–647

    Article  PubMed  CAS  Google Scholar 

  • Grünhage L, Matyssek R, Häberle KH, Wieser G, Metzger U, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L, Raspe S (2012) Flux-based advancement in site-relevant ozone risk assessment for adult beech forests. Trees, this volume

  • Havranek WM, Wieser G (1990) Research design to measure ozone uptake and its effects on gas-exchange of spruce in the field. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air Pollution Research Report 26, Commission of the European Communities, Brussels, pp 148–152

  • Havranek WM, Wieser G (1993) Zur Ozontoleranz der europäischen Lärche (Larix decidua Mill.). Forstwiss Centralbl 112:56–64

    Article  Google Scholar 

  • Havranek WM, Wieser G (1994) Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees. Proc R Soc Edinb B 102:541–546

    Google Scholar 

  • Havranek WM, Wieser G, Bodner M (1989) Ozone fumigation of Norway spruce at timberline. Annales des Sciences Forestieres 46:581s–585s

    Article  Google Scholar 

  • Hernandez-Tejeda T (1981) Recononocimiento y evaluacion del dano por gases oxidants en pinos y avena del ajusco. D.F. Thesis Chapingo, Mexico

  • Houpis JL, Costella MP, Cowels S (1991) A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution. J Environ Qual 20:467–474

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos T R Soc B 273:593–610

    Article  CAS  Google Scholar 

  • Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free- air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190

    Article  PubMed  CAS  Google Scholar 

  • Kitao M, Löw M, Heerdt C, Grans TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    Article  PubMed  CAS  Google Scholar 

  • Koch W (1991) Der RL/SL—vergleich des gaswechsels von Fichte zur Beurteilung der unmittelbaren Luftschadstoffwirkung in Vorderen Bayerischen Wald. In: Reuther M, Kirchner M, Kirchinger E, Reiter H, Rösel H, Pfeifer U (eds) Proceeedings Expertentagung Waldschadensforschung im östlichen Mitteleuropa und in Bayern. 13.-15. 11. 1990 Schloß Neuburg/Inn bei Passau. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU) GSF-Bericht 24/91, pp 143–153

  • Koch W, Lautenschlager K (1988) Photosynthesis and transpiration in the upper crown of a mature spruce in purified and ambient atmosphere in a natural stand. Trees 2:213–222

    Article  Google Scholar 

  • Köstner B, Matyssek R, Heilmeier H, Clausnitzer F, Nunn AJ, Wieser G (2008) Sap flow measurements as a basis for assessing trace-gas exchange of trees. Flora 203:14–33

    Article  Google Scholar 

  • Kronfuß G, Polle A, Tausz M, Havranek WM, Wieser G (1998) Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current year needles of young Norway spruce [Picea abies (L.) Karst.]. Trees 12:482–489

    Google Scholar 

  • Linder S, Nordstrom B, Parsby J, Sundblom E, Troeng E (1980) A gas exchange system for field measurements of photosynthesis and transpiration in a 20-year old stand of Scots pine. Swedish Coniferous Forest Project Technical Report 23, Swedish University of Agricultural Sciences, Uppsala

  • Lovette GM, Hubble JG (1991) Effects of ozone and acid mist on foliar leaching from eastern white pine and sugar maple. Can J For Res 21:794–802

    Article  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Article  Google Scholar 

  • Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206

    Article  PubMed  Google Scholar 

  • LRTAP Convention (2010) Mapping Manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risk and trends. Chapter 3. Mapping critical levels for vegetation. 2010 revision. http://icpvegetation.ceh.ac.uk

  • Maier-Maercker U (1989) Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone. Trees 3:57–64

    Article  Google Scholar 

  • Maier-Maercker U (1991) Verminderung des stomatären Regelvermögens durch Luftschadstoffe. In: Reuther M, Kirchner M, Rösel H (eds) Proceeedings 2. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”. 4.-6. Februar 1991 GSF-Forschungszentrum Neuherberg. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU). GSF-Bericht 26/91, pp 139–149

  • Maier-Maercker U, Koch W (1991) Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation with ozone and environmentally damaged material. Plant Cell Environ 14:175–184

    Article  CAS  Google Scholar 

  • Maier-Maercker U, Koch W (1992) The effect of air pollution on the mechanism of stomatal control. Trees 7:12–25

    Article  Google Scholar 

  • Maier-Maercker U, Koch W, Götz B (1994) Vergleich der Regulationsfähigkeit der Spaltöffnungen von Fichten aus dem Alpenraum mit durch Ozon belasteten Fichten im Labor. Schlußbericht PBWU Nr. 6495-1053-44910

  • Matyssek R, Sandermann H Jr (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    Article  CAS  Google Scholar 

  • Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollution. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, New York, pp 255–308

    Google Scholar 

  • Matyssek R, Havranek WM, Wieser G, Innes JL (1997) Ozone and the forests in Austria and Switzerland. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies, vol 127. Springer, Berlin, pp 95–134

    Google Scholar 

  • Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281

    Article  CAS  Google Scholar 

  • Matyssek R, Wieser G, Nunn AJ, Löw M, Then C, Herbinger K, Blumenröther M, Jehnes S, Reiter IM, Heerdt C, Koch N, Häberle K-H, Haberer K, Werner H, Tausz M, Fabian P, Rennenberg H, Grill D, Oßwald W (2005) How sensitive are forest trees to ozone—new research on an old issue. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 21–28

    Chapter  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraiger H, Oßwald W, Rennenberg H, Sandermann A, Tausz M, Wieser G (2007a) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment—experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson P-E, Paoletti E, Sanz M, Schaub M, Wieser G (2007b) Promoting the O3 flux concept for forest trees. Environ Pollut 146:587–607

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Sandenmann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H (1995) Long term in situ measurements of gas exchange in a Norway spruce canopy at ambient and elevated ozone levels using a light weight chamber system—chamber design and preliminary results. Water Air Soil Poll 85:1413–1418

    Article  CAS  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H (2002) In situ autumn ozone fumigation of mature Norway spruce—effects on net photosynthesis. Phyton 42:97–104

    CAS  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Gonzáles Fernández I, Grünhage L, Harmens H, Hayes F, Karlsson P-E, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068

    Article  CAS  Google Scholar 

  • Musselman RC, Hale BA (1997) Methods for controlled and field ozone exposure of forest tree species in North America. In: Sandermann HJr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies, vol 127. Springer, Berlin, pp 277–315

    Google Scholar 

  • Noctor G, Foyer Ch (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nunn AJ, Reiter IM, Häbele K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119

    CAS  Google Scholar 

  • Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and responsiveness between a phytotron study with young and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506

    Article  PubMed  CAS  Google Scholar 

  • Nunn AJ, Cieslik S, Metzger U, Wieser G, Matyssek R (2010) Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand. Environ Pollut 158:2014–2022

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Kontunen-Soppela S, Riikonen J, Peltonen P, Uddling J, Vapaavuori E (2007) Northern environment predisposes birches to ozone damage. Plant Biol 9:191–196

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Wieser G, Havranek WM (1995) Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst) at high altitude. Plant Cell Environ 18:681–688

    Article  CAS  Google Scholar 

  • Sandermann H, Wellburn AR, Heath RL (1997) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies, vol 127. Springer, Berlin

    Google Scholar 

  • Schaap W (1992) User of branch and whole tree exposure systems to evaluate ozone impacts on forest trees. PhD thesis University Washington, US

  • Skärby L, Troeng E, Boström C-A (1987) Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in scots pine. For Sci 33:801–808

    Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24:472–478

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    Article  PubMed  CAS  Google Scholar 

  • Sprugel DG (2002) When branch autonomy fails: Milton’s law of resource availability and allocation. Tree Physiol 22:1119–1124

    Article  PubMed  Google Scholar 

  • Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Annu Rev Ecol Syst 22:309–334

    Article  Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43:19–35

    Article  Google Scholar 

  • Teskey RO, Doughtery PM, Wiselogel AE (1991) Design and performance of branch chambers suitable for long-term ozone fumigation of foliage in large trees. J Environ Qual 20:591–595

    Article  CAS  Google Scholar 

  • Then C, Wieser G, Heerdt C, Herbinger K, Gigele T, Lohner H (2004) Diagnostics in beech exposed to chronic free air O3 fumigation. 2. Comparison between young and adult trees at the branch and tree level. In: Kinnunen H, Huttunen S (eds) Proceedings IUFRO Meting Forests under Changing Climate, Enhanced UV and Air Pollution Oulu, Finland, 25–30 August 2004, University of Oulu, pp 143–150

  • Then C, Herbinger K, Blumenröther M, Haberer K, Heerdt C, Oßwald W, Rennenberg H, Grill D, Tausz M, Wieser G (2007) Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns. Plant Biol 9:309–319

    Article  PubMed  CAS  Google Scholar 

  • Then C, Löw M, Matyssek R, Wieser G (2008) Deriving ozone dose-response of photosynthesis in adult forest trees from branch-level gas exchange assessments. Environ Pollut 153:526–528

    Article  PubMed  CAS  Google Scholar 

  • Tuovinen J-P, Simpson D, Emberson L, Ashmore M, Gerosa G (2007) Robustness of modelled ozone exposures and doses. Environ Pollut 146:578–586

    Article  PubMed  CAS  Google Scholar 

  • Vann DR, Strimback GR, Johnson Ah (1992) Effects of air borne chemicals on freezing resistance of red sprue foliage. For Ecol Manag 51:69–80

    Article  Google Scholar 

  • Wang D, Hinckley TM, Cumming AB, Braatne J (1995) A comparison of measured and models ozone uptake into plant leaves. Environ Pollut 89:247–254

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation on mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut R 9:117–121

    Article  Google Scholar 

  • Wieser G (2002) Exchange of trace gases at the tree—atmosphere interface: ozone. In: Gasche R, Papen H, Rennenberg H (eds) Trace gas exchange in forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 211–226

    Google Scholar 

  • Wieser G, Emberson L (2004) Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies. Atmos Environ 38:2339–2348

    Article  CAS  Google Scholar 

  • Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232

    Article  Google Scholar 

  • Wieser G, Havranek WM (1994) Exposure of mature Norway spruce to ozone in twig-chambers: effects on gas exchange. Proc R Soc Edinb B 102:119–125

    Google Scholar 

  • Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15:253–258

    PubMed  CAS  Google Scholar 

  • Wieser G, Havranek WM (1996) Evaluation of ozone impact on mature spruce and larch in the field. J Plant Physiol 148:189–194

    Article  CAS  Google Scholar 

  • Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9

    Article  PubMed  CAS  Google Scholar 

  • Wieser G, Tausz M (2006) Proceedings on the workshop: critical levels of ozone: further applying and developing the flux-based concept. Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Wien

    Google Scholar 

  • Wieser G, Weih M, Havranek WM (1991) Ozone fumigation in the sun crown of Norway spruce. In: Reuther M, Kirchner M, Kirchinger E, Reiter H, Rösel K, Pfeifer U (eds) Proceedings Expertentagung “Waldschadensforschung im östlichen Mitteleuropa und in Bayern”. 13–15 November 1990 in Schloß Neuburg/Inn bei Passau. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen, GSF- Bericht 24/91, pp 567–573

  • Wieser G, Häsler R, Götz B, Koch W, Havranek WM (2000) Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis. Environ Pollut 110:415–422

    Article  Google Scholar 

  • Wieser G, Tausz M, Wonisch A, Havranek WM (2001) Free radical scavengers and photosynthetic pigments in needles of a cembran pine (Pinus cembra L.) tree growing at the alpine timberline as affected by ozone exposure. Biol Plantarum 44:225–232

    Article  CAS  Google Scholar 

  • Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590

    Article  PubMed  Google Scholar 

  • Wieser G, Hecke K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2003a) The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress. Ann For Sci 60:131–135

    Article  Google Scholar 

  • Wieser G, Matyssek R, Köstner B, Oberhuber W (2003b) Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurements. Environ Pollut 126:5–8

    Article  PubMed  CAS  Google Scholar 

  • Wieser G, Manning WJ, Tausz M, Bytnerowicz A (2006) Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: an overview. Environ Pollut 139:53–58

    Article  PubMed  CAS  Google Scholar 

  • Wieser G, Matyssek R, Then C, Cieslik S, Paoletti E, Ceulemans R (2008) Upscaling ozone flux in forests from leaf to landscape. Ital J Agron 1:35–41

    Google Scholar 

  • Winner WE (1994) Mechanistic analysis of plant response to air pollution. Ecol Appl 4:651–661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wieser.

Additional information

Communicated by F. Mohren.

Special topic: Integrating Modeling and Experiment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieser, G., Matyssek, R., Götz, B. et al. Branch cuvettes as means of ozone risk assessment in adult forest tree crowns: combining experimental and modelling capacities. Trees 26, 1703–1712 (2012). https://doi.org/10.1007/s00468-012-0715-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0715-6

Keywords

Navigation