, Volume 26, Issue 6, pp 1703–1712 | Cite as

Branch cuvettes as means of ozone risk assessment in adult forest tree crowns: combining experimental and modelling capacities

  • Gerhard Wieser
  • Rainer Matyssek
  • Bernhard Götz
  • Ludger Grünhage
Original Paper


The branch autonomy principle has been referred to extensively for using branch cuvettes as a technique of studying ozone (O3) effects within the canopy of adult forest trees. However, this principle may not hold in general regarding biochemical interactions between O3-impacted branches exposed inside cuvettes and neighbouring crown parts under the unchanged ambient O3 regime. After reviewing relevant cuvette studies conducted to date, we will provide evidence that cuvette-exposed branches may serve, given awareness of outlined pre-requisites and restrictions, as surrogates for examining the crown-level response of trees to elevated O3 regimes. Such a conclusion is based on the defence metabolism of branches, which seems to be autonomous to some extent from neighbouring crown sections. Cuvette studies may, therefore, be used to derive dose response functions as measures of O3 sensitivity. On such grounds, also validation and improvement of stomatal O3 uptake modelling becomes feasible. The branch-level approach, however, does not substitute whole-tree free-air O3 fumigation and related flux assessments, as branches in view of representativeness and boundary layer characteristics represent one stage in scaling O3 flux between leaf and tree level. Branch level-based flux scaling should be backed, therefore, by independent trunk sap-flow assessment techniques that offer derivation of FO3 at the whole-tree level.


Ozone Branch cuvettes Branch autonomy Risk assessment Model validation 


  1. Bucher J, Landolt W, Bleurer P (1986) Ozonessungen auf dem Rötiboden ob Göschenen UR. Schweiz Z Forstwe 137:607–621Google Scholar
  2. Dobson MC, Taylor G, Freer-Smith PH (1990) The control of ozone uptake by Picea abies (L.) Karst. and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytol 116:465–474CrossRefGoogle Scholar
  3. Emberson LD, Wieser G, Ashmore MR (2000a) Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environ Pollut 109:393–402PubMedCrossRefGoogle Scholar
  4. Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J-P (2000b) Modelling stomatal flux across Europe. Environ Pollut 109:403–413PubMedCrossRefGoogle Scholar
  5. Götz B (1996) Ozon und Trockenstreß. Wirkungen auf den Gaswechsel von Fichte. Libri Botanici 16, IHW-Verlag MünchenGoogle Scholar
  6. Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia— implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668PubMedGoogle Scholar
  7. Grulke NE, Miller PR, Scioli D (1996) Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone. Tree Physiol 16:575–581PubMedCrossRefGoogle Scholar
  8. Grulke NE, Paoletti E, Heath RL (2007) Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ Pollut 146:640–647PubMedCrossRefGoogle Scholar
  9. Grünhage L, Matyssek R, Häberle KH, Wieser G, Metzger U, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L, Raspe S (2012) Flux-based advancement in site-relevant ozone risk assessment for adult beech forests. Trees, this volumeGoogle Scholar
  10. Havranek WM, Wieser G (1990) Research design to measure ozone uptake and its effects on gas-exchange of spruce in the field. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air Pollution Research Report 26, Commission of the European Communities, Brussels, pp 148–152Google Scholar
  11. Havranek WM, Wieser G (1993) Zur Ozontoleranz der europäischen Lärche (Larix decidua Mill.). Forstwiss Centralbl 112:56–64CrossRefGoogle Scholar
  12. Havranek WM, Wieser G (1994) Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees. Proc R Soc Edinb B 102:541–546Google Scholar
  13. Havranek WM, Wieser G, Bodner M (1989) Ozone fumigation of Norway spruce at timberline. Annales des Sciences Forestieres 46:581s–585sCrossRefGoogle Scholar
  14. Hernandez-Tejeda T (1981) Recononocimiento y evaluacion del dano por gases oxidants en pinos y avena del ajusco. D.F. Thesis Chapingo, MexicoGoogle Scholar
  15. Houpis JL, Costella MP, Cowels S (1991) A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution. J Environ Qual 20:467–474CrossRefGoogle Scholar
  16. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos T R Soc B 273:593–610CrossRefGoogle Scholar
  17. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free- air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedCrossRefGoogle Scholar
  18. Kitao M, Löw M, Heerdt C, Grans TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544PubMedCrossRefGoogle Scholar
  19. Koch W (1991) Der RL/SL—vergleich des gaswechsels von Fichte zur Beurteilung der unmittelbaren Luftschadstoffwirkung in Vorderen Bayerischen Wald. In: Reuther M, Kirchner M, Kirchinger E, Reiter H, Rösel H, Pfeifer U (eds) Proceeedings Expertentagung Waldschadensforschung im östlichen Mitteleuropa und in Bayern. 13.-15. 11. 1990 Schloß Neuburg/Inn bei Passau. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU) GSF-Bericht 24/91, pp 143–153Google Scholar
  20. Koch W, Lautenschlager K (1988) Photosynthesis and transpiration in the upper crown of a mature spruce in purified and ambient atmosphere in a natural stand. Trees 2:213–222CrossRefGoogle Scholar
  21. Köstner B, Matyssek R, Heilmeier H, Clausnitzer F, Nunn AJ, Wieser G (2008) Sap flow measurements as a basis for assessing trace-gas exchange of trees. Flora 203:14–33CrossRefGoogle Scholar
  22. Kronfuß G, Polle A, Tausz M, Havranek WM, Wieser G (1998) Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current year needles of young Norway spruce [Picea abies (L.) Karst.]. Trees 12:482–489Google Scholar
  23. Linder S, Nordstrom B, Parsby J, Sundblom E, Troeng E (1980) A gas exchange system for field measurements of photosynthesis and transpiration in a 20-year old stand of Scots pine. Swedish Coniferous Forest Project Technical Report 23, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  24. Lovette GM, Hubble JG (1991) Effects of ozone and acid mist on foliar leaching from eastern white pine and sugar maple. Can J For Res 21:794–802CrossRefGoogle Scholar
  25. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548CrossRefGoogle Scholar
  26. Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206PubMedCrossRefGoogle Scholar
  27. LRTAP Convention (2010) Mapping Manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risk and trends. Chapter 3. Mapping critical levels for vegetation. 2010 revision.
  28. Maier-Maercker U (1989) Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone. Trees 3:57–64CrossRefGoogle Scholar
  29. Maier-Maercker U (1991) Verminderung des stomatären Regelvermögens durch Luftschadstoffe. In: Reuther M, Kirchner M, Rösel H (eds) Proceeedings 2. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”. 4.-6. Februar 1991 GSF-Forschungszentrum Neuherberg. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU). GSF-Bericht 26/91, pp 139–149Google Scholar
  30. Maier-Maercker U, Koch W (1991) Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation with ozone and environmentally damaged material. Plant Cell Environ 14:175–184CrossRefGoogle Scholar
  31. Maier-Maercker U, Koch W (1992) The effect of air pollution on the mechanism of stomatal control. Trees 7:12–25CrossRefGoogle Scholar
  32. Maier-Maercker U, Koch W, Götz B (1994) Vergleich der Regulationsfähigkeit der Spaltöffnungen von Fichten aus dem Alpenraum mit durch Ozon belasteten Fichten im Labor. Schlußbericht PBWU Nr. 6495-1053-44910Google Scholar
  33. Matyssek R, Sandermann H Jr (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404CrossRefGoogle Scholar
  34. Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollution. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, New York, pp 255–308Google Scholar
  35. Matyssek R, Havranek WM, Wieser G, Innes JL (1997) Ozone and the forests in Austria and Switzerland. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies, vol 127. Springer, Berlin, pp 95–134Google Scholar
  36. Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281CrossRefGoogle Scholar
  37. Matyssek R, Wieser G, Nunn AJ, Löw M, Then C, Herbinger K, Blumenröther M, Jehnes S, Reiter IM, Heerdt C, Koch N, Häberle K-H, Haberer K, Werner H, Tausz M, Fabian P, Rennenberg H, Grill D, Oßwald W (2005) How sensitive are forest trees to ozone—new research on an old issue. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 21–28CrossRefGoogle Scholar
  38. Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraiger H, Oßwald W, Rennenberg H, Sandermann A, Tausz M, Wieser G (2007a) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment—experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180PubMedCrossRefGoogle Scholar
  39. Matyssek R, Bytnerowicz A, Karlsson P-E, Paoletti E, Sanz M, Schaub M, Wieser G (2007b) Promoting the O3 flux concept for forest trees. Environ Pollut 146:587–607PubMedCrossRefGoogle Scholar
  40. Matyssek R, Sandenmann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedCrossRefGoogle Scholar
  41. Mikkelsen TN, Ro-Poulsen H (1995) Long term in situ measurements of gas exchange in a Norway spruce canopy at ambient and elevated ozone levels using a light weight chamber system—chamber design and preliminary results. Water Air Soil Poll 85:1413–1418CrossRefGoogle Scholar
  42. Mikkelsen TN, Ro-Poulsen H (2002) In situ autumn ozone fumigation of mature Norway spruce—effects on net photosynthesis. Phyton 42:97–104Google Scholar
  43. Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Gonzáles Fernández I, Grünhage L, Harmens H, Hayes F, Karlsson P-E, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068CrossRefGoogle Scholar
  44. Musselman RC, Hale BA (1997) Methods for controlled and field ozone exposure of forest tree species in North America. In: Sandermann HJr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies, vol 127. Springer, Berlin, pp 277–315Google Scholar
  45. Noctor G, Foyer Ch (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  46. Nunn AJ, Reiter IM, Häbele K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119Google Scholar
  47. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and responsiveness between a phytotron study with young and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506PubMedCrossRefGoogle Scholar
  48. Nunn AJ, Cieslik S, Metzger U, Wieser G, Matyssek R (2010) Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand. Environ Pollut 158:2014–2022PubMedCrossRefGoogle Scholar
  49. Oksanen E, Kontunen-Soppela S, Riikonen J, Peltonen P, Uddling J, Vapaavuori E (2007) Northern environment predisposes birches to ozone damage. Plant Biol 9:191–196PubMedCrossRefGoogle Scholar
  50. Polle A, Wieser G, Havranek WM (1995) Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst) at high altitude. Plant Cell Environ 18:681–688CrossRefGoogle Scholar
  51. Sandermann H, Wellburn AR, Heath RL (1997) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies, vol 127. Springer, BerlinGoogle Scholar
  52. Schaap W (1992) User of branch and whole tree exposure systems to evaluate ozone impacts on forest trees. PhD thesis University Washington, USGoogle Scholar
  53. Skärby L, Troeng E, Boström C-A (1987) Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in scots pine. For Sci 33:801–808Google Scholar
  54. Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669CrossRefGoogle Scholar
  55. Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24:472–478PubMedGoogle Scholar
  56. Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467PubMedCrossRefGoogle Scholar
  57. Sprugel DG (2002) When branch autonomy fails: Milton’s law of resource availability and allocation. Tree Physiol 22:1119–1124PubMedCrossRefGoogle Scholar
  58. Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Annu Rev Ecol Syst 22:309–334CrossRefGoogle Scholar
  59. Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43:19–35CrossRefGoogle Scholar
  60. Teskey RO, Doughtery PM, Wiselogel AE (1991) Design and performance of branch chambers suitable for long-term ozone fumigation of foliage in large trees. J Environ Qual 20:591–595CrossRefGoogle Scholar
  61. Then C, Wieser G, Heerdt C, Herbinger K, Gigele T, Lohner H (2004) Diagnostics in beech exposed to chronic free air O3 fumigation. 2. Comparison between young and adult trees at the branch and tree level. In: Kinnunen H, Huttunen S (eds) Proceedings IUFRO Meting Forests under Changing Climate, Enhanced UV and Air Pollution Oulu, Finland, 25–30 August 2004, University of Oulu, pp 143–150Google Scholar
  62. Then C, Herbinger K, Blumenröther M, Haberer K, Heerdt C, Oßwald W, Rennenberg H, Grill D, Tausz M, Wieser G (2007) Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns. Plant Biol 9:309–319PubMedCrossRefGoogle Scholar
  63. Then C, Löw M, Matyssek R, Wieser G (2008) Deriving ozone dose-response of photosynthesis in adult forest trees from branch-level gas exchange assessments. Environ Pollut 153:526–528PubMedCrossRefGoogle Scholar
  64. Tuovinen J-P, Simpson D, Emberson L, Ashmore M, Gerosa G (2007) Robustness of modelled ozone exposures and doses. Environ Pollut 146:578–586PubMedCrossRefGoogle Scholar
  65. Vann DR, Strimback GR, Johnson Ah (1992) Effects of air borne chemicals on freezing resistance of red sprue foliage. For Ecol Manag 51:69–80CrossRefGoogle Scholar
  66. Wang D, Hinckley TM, Cumming AB, Braatne J (1995) A comparison of measured and models ozone uptake into plant leaves. Environ Pollut 89:247–254PubMedCrossRefGoogle Scholar
  67. Werner H, Fabian P (2002) Free-air fumigation on mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut R 9:117–121CrossRefGoogle Scholar
  68. Wieser G (2002) Exchange of trace gases at the tree—atmosphere interface: ozone. In: Gasche R, Papen H, Rennenberg H (eds) Trace gas exchange in forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 211–226Google Scholar
  69. Wieser G, Emberson L (2004) Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies. Atmos Environ 38:2339–2348CrossRefGoogle Scholar
  70. Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232CrossRefGoogle Scholar
  71. Wieser G, Havranek WM (1994) Exposure of mature Norway spruce to ozone in twig-chambers: effects on gas exchange. Proc R Soc Edinb B 102:119–125Google Scholar
  72. Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15:253–258PubMedGoogle Scholar
  73. Wieser G, Havranek WM (1996) Evaluation of ozone impact on mature spruce and larch in the field. J Plant Physiol 148:189–194CrossRefGoogle Scholar
  74. Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9PubMedCrossRefGoogle Scholar
  75. Wieser G, Tausz M (2006) Proceedings on the workshop: critical levels of ozone: further applying and developing the flux-based concept. Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), WienGoogle Scholar
  76. Wieser G, Weih M, Havranek WM (1991) Ozone fumigation in the sun crown of Norway spruce. In: Reuther M, Kirchner M, Kirchinger E, Reiter H, Rösel K, Pfeifer U (eds) Proceedings Expertentagung “Waldschadensforschung im östlichen Mitteleuropa und in Bayern”. 13–15 November 1990 in Schloß Neuburg/Inn bei Passau. Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen, GSF- Bericht 24/91, pp 567–573Google Scholar
  77. Wieser G, Häsler R, Götz B, Koch W, Havranek WM (2000) Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis. Environ Pollut 110:415–422CrossRefGoogle Scholar
  78. Wieser G, Tausz M, Wonisch A, Havranek WM (2001) Free radical scavengers and photosynthetic pigments in needles of a cembran pine (Pinus cembra L.) tree growing at the alpine timberline as affected by ozone exposure. Biol Plantarum 44:225–232CrossRefGoogle Scholar
  79. Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590PubMedCrossRefGoogle Scholar
  80. Wieser G, Hecke K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2003a) The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress. Ann For Sci 60:131–135CrossRefGoogle Scholar
  81. Wieser G, Matyssek R, Köstner B, Oberhuber W (2003b) Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurements. Environ Pollut 126:5–8PubMedCrossRefGoogle Scholar
  82. Wieser G, Manning WJ, Tausz M, Bytnerowicz A (2006) Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: an overview. Environ Pollut 139:53–58PubMedCrossRefGoogle Scholar
  83. Wieser G, Matyssek R, Then C, Cieslik S, Paoletti E, Ceulemans R (2008) Upscaling ozone flux in forests from leaf to landscape. Ital J Agron 1:35–41Google Scholar
  84. Winner WE (1994) Mechanistic analysis of plant response to air pollution. Ecol Appl 4:651–661CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gerhard Wieser
    • 1
  • Rainer Matyssek
    • 2
  • Bernhard Götz
    • 3
  • Ludger Grünhage
    • 4
  1. 1.Division of Alpine Timberline EcophysiologyFederal Research and Training Centre for Forests, Natural Hazards and LandscapeInnsbruckAustria
  2. 2.Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany
  3. 3.University of Applied SciencesHochschule für nachhaltige Entwicklung Eberswalde (FH)EberswaldeGermany
  4. 4.Department of Plant EcologyJustus-Liebig University GiessenGiessenGermany

Personalised recommendations