Trees

, Volume 26, Issue 4, pp 1343–1360

Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns

Original Paper
  • 626 Downloads

Abstract

Species mixing is widely held to stabilize productivity, increase resilience and contribute to risk minimization in forest stands in need of special as a result of longevity. However, research on the effects of mixing on productivity and resource consumption so far yielded fairly incoherent results rather than general findings. We focused on the effects of the spatial mixing pattern and the annual climate conditions on the mixing effect, which to date have seldom been considered as modifiers of mixing effects. Nine years of intensive survey of four pure stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) and two mixed plots with different mixing pattern showed: (1) mixing hardly changed annual net primary productivity at stand level when Norway spruce and European beech are cultivated group-wise but increased by 37 % on account of a higher efficiency of water and light use in individual tree-wise mixture. (2) Favourable climatic conditions increased the superiority of mixed versus pure stands productivity, while, in particular, water stress cancelled the benefit of mixing considerably. (3) An interaction between the spatial pattern and variable climatic conditions was revealed. Both improved light and water use were found in favourable years in close inter-specific intermingling. However, in unfavourable years the spatial pattern played a less pronounced role in terms of productivity.

Keywords

Intra-specific competition Inter-specific competition Resource-use efficiency Mixed stand productivity Mixed forests Over-yielding Under-yielding 

References

  1. Assmann E (1961) Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, MünchenGoogle Scholar
  2. Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel für Bayern. Forstw Cbl 84(1):13–43CrossRefGoogle Scholar
  3. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253CrossRefGoogle Scholar
  4. BayFORKLIM (1996) Klimaatlas Bayern. Bayerischer Klimaforschungsverbund, Met. Inst., Universität München. ISBN: 3-00-000638-9Google Scholar
  5. Berger TW, Untersteiner H, Schume H, Jost G (2008) Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce–beech stand. For Ecol Manag 255:605–618CrossRefGoogle Scholar
  6. Berger TW, Inselsbacher E, Mutsch F, Pfeffer M (2009) Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). For Ecol Manag 258:2578–2592CrossRefGoogle Scholar
  7. Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manag 193:5–16CrossRefGoogle Scholar
  8. Burger H (1941) Beitrag zur Frage der reinen oder gemischten Bestände. Mitt Schweiz Anst Forstl Versuchswesen 22:164–203Google Scholar
  9. Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Forstl Forschungsber München 126Google Scholar
  10. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965CrossRefGoogle Scholar
  11. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238, Wirtschafts- und Verl.-Ges. Gas und Wasser, BonnGoogle Scholar
  12. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  13. Forrester DI, Schortemeyer M, Stock WD, Bauhus J, Khanna PK, Cowie AL (2007) Assessing nitrogen fixation in mixed- and single- species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol 27:1319–1328Google Scholar
  14. Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water-use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manag 259:1761–1770CrossRefGoogle Scholar
  15. Franz F, Bachler J, Deckelmann B, Kennel E, Kennel R, Schmidt A, Wotschikowsky U (1973) Bayerische Waldinventur 1970/71, Inventurabschnitt I: Großrauminventur Aufnahme- und Auswertungsverfahren. Forstliche Forschungsberichte München 11Google Scholar
  16. Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180CrossRefGoogle Scholar
  17. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  18. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190PubMedCrossRefGoogle Scholar
  19. Hector A, Schmid B, Beierkuhnlein C, Caldeira CM, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadly PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286(5442):1123–1127PubMedCrossRefGoogle Scholar
  20. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  21. Jørgensen U, Schelde K (2001) Energy crop water and nutrient use efficiency. Prepared for the International Energy Agency IEA Bioenergy Task 17, Short Rotation Crops. Danish Institute of Agricultural Sciences (DIAS), Department of Crop Physiology and Soil Science, Research Centre Foulum, Tjele, DenmarkGoogle Scholar
  22. Keller W (1995) Zur Oberhöhenberechnung in Mischbeständen aus standörtlicher Sicht. Bericht der Jahrestagung der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten, Joachimsthal 52–60 Google Scholar
  23. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141Google Scholar
  24. Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand. AFJZ 136:149–161, 173–189Google Scholar
  25. Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116CrossRefGoogle Scholar
  26. Leuchner M, Hertel C, Rötzer T, Seifert T, Weigt R, Werner H, Menzel A (2012) Solar radiation as a driver for growth and competition in forest stands. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch C, Pretzsch H (eds) Growth and defence in plants: resource allocation at multiple scale. Ecol. Studies (in print)Google Scholar
  27. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle KH (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158(8):2527–2532PubMedCrossRefGoogle Scholar
  28. Mettin C (1985) Betriebswirtschaftliche und ökologische Zusammenhänge zwischen Standortskraft und Leistung in Fichtenreinbeständen und Fichten/Buchen-Mischbeständen. AFZDerWald 40:803–810 Google Scholar
  29. Monteith JL (1977) Climate and the efficiency of crop production. Britain. Philos Trans R Soc Lond B 281:277–294CrossRefGoogle Scholar
  30. Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704PubMedCrossRefGoogle Scholar
  31. Nikolova PS, Raspe S, Andersen CP, Mainiero R, Blaschke R, Häberle K-H (2009a) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur J For Res 128:87–98CrossRefGoogle Scholar
  32. Nikolova P, Blaschke H, Matyssek R, Pretzsch H, Seifert T (2009b) Combined application of computer tomography and light microscopy for analysis of conductive xylem area of beech and spruce coarse roots. Eur J For Res 128(2):145–153CrossRefGoogle Scholar
  33. Otto HJ (1994) Waldökologie. UTB für Wissenschaft. Eugen Ulmer, StuttgartGoogle Scholar
  34. Petri H (1966) Versuch einer standortgerechten, waldbaulichen und wirtschaftlichen Standraumregelung von Buchen-Fichten-Mischbeständen. Mitt Landesforstverwaltung Rheinland-Pfalz 13, p 145Google Scholar
  35. Pielou EC (1961) Segregation and symmetry in two-species populations as studied by nearest neighbour relations. J Ecol 49:255–269CrossRefGoogle Scholar
  36. Pretzsch H (1995) On the effect of the spatial distribution of trees on the stand growth. Allgemeine Forst- und Jagdzeitung 166(9–10):190–201Google Scholar
  37. Pretzsch H (2005a) Diversity and productivity in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological studies, vol 176. Springer, Berlin, pp 41–64CrossRefGoogle Scholar
  38. Pretzsch H (2005b) Link between the self-thinning rules for herbaceous and woody plants. Scientia agriculturae Bohemica 36(3):98–107Google Scholar
  39. Pretzsch H (2009) Forest dynamic, growth and yield. From measurement to model. Springer, BerlinCrossRefGoogle Scholar
  40. Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and Stand Density Index. For Sci 51:304–320 Google Scholar
  41. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in Central Europe. Can J For Res 40:370–384CrossRefGoogle Scholar
  42. Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369CrossRefGoogle Scholar
  43. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia. doi:10.1007/s00442-011-2240-5
  44. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639PubMedCrossRefGoogle Scholar
  45. Pretzsch H, Schütze G (2009) Transgressive over-yielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  46. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches Wachstum oder Parasitenabwehr? im kranzberger Forst Forstw Cbl 117:241–257Google Scholar
  47. Pretzsch H, Block J, Dieler J, Dong Ph H, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712CrossRefGoogle Scholar
  48. Pukkala T (1989) Prediction of tree diameter and height in a Scots pine stand as a function of the spatial pattern of trees. Silva Fenn 23(2):83–99Google Scholar
  49. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208PubMedCrossRefGoogle Scholar
  50. Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstl Forschungsber München 163:174Google Scholar
  51. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870CrossRefGoogle Scholar
  52. Rothe A, Huber C, Kreutzer K, Weis W (2002a) Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45CrossRefGoogle Scholar
  53. Rothe A, Kreutzer K, Küchenhoff K (2002b) Influence of tree species composition on soil and soil solution properties in two mixed spruce–beech stands with contrasting history in Southern Germany. Plant Soil 240:47–56CrossRefGoogle Scholar
  54. Rötzer T, Grote R, Pretzsch H (2005) Effects of environmental changes on the vitality of forest stands. Eur J For Res 124:349–362CrossRefGoogle Scholar
  55. Rötzer T, Seifert T, Pretzsch H (2009) Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J For Res 128:171–182CrossRefGoogle Scholar
  56. Rötzer T, Dieler J, Mette T, Moshammer R, Pretzsch H (2010a) Productivity and carbon dynamics in managed Central-European forests depending on site conditions and thinning regimes. Forestry 83(5):483–496CrossRefGoogle Scholar
  57. Rötzer T, Leuchner M, Nunn AJ (2010b) Simulating stand climate, phenology, and photosynthesis of a forest stand with a process based growth model. Int J Biometeorol 54(4):449–464PubMedCrossRefGoogle Scholar
  58. Rötzer T, Seifert T, Gayler S, Priesack E, Pretzsch H (2012) Modeling the effects of stress on growth and defence on tree and stand level. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch C, Pretzsch H (eds) Growth and defence in plants: resource allocation at multiple scale. Ecol. Studies (in press)Google Scholar
  59. Schober R (1975) Ertragstafeln wichtiger Baumarten. JD Sauerländer’s Verlag, Frankfurt am MainGoogle Scholar
  60. Scherer-Lorenzen M, Körner Ch, Schulze ED (eds) (2005) Forest diversity and function. Ecological studies, vol 176. Springer, BerlinGoogle Scholar
  61. Schuhbäck T (2004) Nährelementstatus und Bodenzustand an der Bestandesgrenze Buche-Fichte im Mischbestand Kranzberger Forst. Diploma thesis, TU MünchenGoogle Scholar
  62. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size-asymmetry in competition among plants. Oecologia 113:447–455CrossRefGoogle Scholar
  63. Seifert T, Müller-Starck G (2009) Impacts of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies L. [Karst.]). Eur J For Res 128(2):155–169CrossRefGoogle Scholar
  64. Spellmann H (1996) Leistung und Windstabilität von Fichten-Buchen-Mischbeständen. Proc Dt Verb Forstl Forschungsanst, Sek Ertragskd, in Neresheim, pp 46–56Google Scholar
  65. Trendelenburg R, Mayer-Wegelin H (1995) Das Holz als Rohstoff, 2 Edn, Hanser, MünchenGoogle Scholar
  66. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, UKGoogle Scholar
  67. von Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbeständen aus Fichte und Buche als Grundlage für waldbauliche Entscheidungen. Forstarchiv 68:167–179Google Scholar
  68. Walentowski H, Ewald J, Fischer A, Kölling CH, Türk W (2004) Handbuch der natürlichen Waldgesellschaften Bayerns. Geobotanica, Freising, p 441Google Scholar
  69. Wichmann L (2001) Annual variations in competition symmetry in even-aged Sitka Spruce. Ann Bot 88:145–151CrossRefGoogle Scholar
  70. Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt a Forstwirtschaft u Forstwissenschaft 13:1–88Google Scholar
  71. Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • H. Pretzsch
    • 1
  • J. Dieler
    • 1
  • T. Seifert
    • 2
  • T. Rötzer
    • 1
  1. 1.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  2. 2.Department of Forest and Wood ScienceStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations