, Volume 26, Issue 1, pp 13–29 | Cite as

Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species

  • Ana Palacio-BielsaEmail author
  • Montserrat Roselló
  • Pablo Llop
  • María M. López


The number of described pathogenic and non-pathogenic Erwinia species associated with pome fruit trees, especially pear trees, has increased in recent years, but updated comparative information about their similarities and differences is scarce. The causal agent of the fire blight disease of rosaceous plants, Erwinia amylovora, is the most studied species of this genus. Recently described species that are pathogenic to pear trees include Erwinia pyrifoliae in Korea and Japan, Erwinia spp. in Japan, and Erwinia piriflorinigrans in Spain. E. pyrifoliae causes symptoms that are indistinguishable from those of fire blight in Asian pear trees, Erwinia spp. from Japan cause black lesions on several cultivars of pear trees, and E. piriflorinigrans causes necrosis of only pear blossoms. All these novel species share some phenotypic and genetic characteristics with E. amylovora. Non-pathogenic Erwinia species are Erwinia billingiae and Erwinia tasmaniensis that have also been described on pome fruits; however, less information is available on these species. We present an updated review on the phenotypic and molecular characteristics, habitat, pathogenicity, and epidemiology of E. amylovora, E. pyrifoliae, Erwinia spp. from Japan, E. piriflorinigrans, E. billingiae, and E. tasmaniensis. In addition, the interaction of these species with pome fruit trees is discussed.


Erwinia amylovora Erwinia pyrifoliae BSBP and BBSDP Japanese Erwinia spp. Erwinia piriflorinigrans Erwinia billingiae Erwinia tasmaniensis 



The authors thank the project AGL2008-05723-C02-01/AGR from Spain and COST Action 864 Pome Fruit Health.


  1. Aldridge P, Metzger M, Geider K (1997) Genetics of sorbitol metabolism by Erwinia amylovora and its influence on bacterial virulence. Mol Gen Genet 256:611–619PubMedCrossRefGoogle Scholar
  2. Barny M-A (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on hosts plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol 101:333–340CrossRefGoogle Scholar
  3. Barny M-A, Guinebretière M-H, Marçais B, Coissac E, Paulin J-P, Laurent J (1990) Cloning of a large gene cluster involved in Erwinia amylovora CFBP 1430 virulence. Mol Microbiol 44:777–786Google Scholar
  4. Bellemann P, Geider K (1992) Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J Gen Microbiol 138:931–940PubMedGoogle Scholar
  5. Belleman P, Bereswill S, Berger S, Geider K (1994) Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int J Biol Macromol 16:290–296CrossRefGoogle Scholar
  6. Bereswill S, Jock S, Aldridge P, Janse JD, Geider K (1997) Molecular characterization of natural Erwinia amylovora strains deficient in levan synthesis. Physiol Mol Plant Pathol 51:215–225CrossRefGoogle Scholar
  7. Billing E (2011) Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol 60:178–189CrossRefGoogle Scholar
  8. Billing E, Baker LAE (1963) Characteristics of Erwinia-like organisms found in plant material. J Appl Bacteriol 26:59–65Google Scholar
  9. Blachinsky D, Shtienberg D, Zamski E, Weinthal D, Manulis S (2006) Effects of pear tree physiology on fire blight progression in perennial branches and on expression of pathogenicity genes in Erwinia amylovora. Eur J Plant Pathol 116:315–324CrossRefGoogle Scholar
  10. Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emödy L, Polen T, Rachel R, Wendisch VF, Unden G (2005) Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151:3287–3298PubMedCrossRefGoogle Scholar
  11. Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the virulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci USA 95:1325–1330PubMedCrossRefGoogle Scholar
  12. Bogdanove AJ, Kim JF, Beer SV (2000) Disease-specific genes of Erwinia amylovora: keys to understanding pathogenesis and potential targets for disease control. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 163–177CrossRefGoogle Scholar
  13. Bogs J, Geider K (2000) Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 182:5351–5358PubMedCrossRefGoogle Scholar
  14. Boureau T, ElMaarouf-Bouteau H, Garnier A, Brisset M-N, Perino C, Pucheu I, Barny M-A (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19:16–24PubMedCrossRefGoogle Scholar
  15. Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933PubMedCrossRefGoogle Scholar
  16. Cascales E (2008) The type VI secretion toolkit. EMBO Reports 98:735–741CrossRefGoogle Scholar
  17. Donat V, Bosca EG, Peñalver J, López MM (2007) Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources. J Appl Microbiol 103:1639–1649PubMedCrossRefGoogle Scholar
  18. Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces diseases resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NlM1 gene. Plant J 20:207–215PubMedCrossRefGoogle Scholar
  19. Duffy B, Dandekar AM (2008) Sorbitol has no role in fire blight as demonstrated using transgenic apple with constitutively altered content. Acta Hort 793:279–283Google Scholar
  20. Eastgate JA (2000) Erwinia amylovora: the molecular basis of fireblight disease. Mol Plant Pathol 1:325–329PubMedCrossRefGoogle Scholar
  21. Eden-Green SJ, Billing E (1974) Fireblight. Rev Plant Pathol 53:353–365Google Scholar
  22. Gaudriault S, Malandrin L, Paulin J-P, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069PubMedCrossRefGoogle Scholar
  23. Geider K (2000) Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 117–140CrossRefGoogle Scholar
  24. Geider K (2006) Characterization of antagonistic bacteria and viral lysozime for control of fire blight. Phytopathol Pol 39:87–92Google Scholar
  25. Geider K, Auling G, Du Z, Jakovljevic V, Jock S, Völksch B (2006) Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943PubMedCrossRefGoogle Scholar
  26. Geider K, Auling G, Jakovljevic V, Völksch B (2009) A polyphasic approach assigns the pathogenic Erwinia strains from diseased pear trees in Japan to Erwinia pyrifoliae. Lett Appl Microbiol 48:324–330PubMedCrossRefGoogle Scholar
  27. Geider K, Jock S, Sulikowska M (2008) Screening for Erwinia billingiae and E. tasmaniensis in field isolates, differentiation by sequence analysis and effects as antagonists. Acta Hort 793:119–121Google Scholar
  28. Geier G, Geider K (1993) Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 42:387–404CrossRefGoogle Scholar
  29. Goodman RN, Novacky A (1994) The hypersensitive reaction in plants to pathogens: a resistance phenomenon. APS Press, St. PaulGoogle Scholar
  30. Gross M, Geier G, Rudolph K, Geider K (1992) Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 40:371–381CrossRefGoogle Scholar
  31. Gowda SS, Goodman RN (1970) Movement and persistence of Erwinia amylovora in shoot, stem and root of apple. Plant Dis Report 54:576–580Google Scholar
  32. Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J, Verdonck L, Swings J (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397PubMedCrossRefGoogle Scholar
  33. Hauben L, Swings J (2005) Genus XIII. Erwinia Winslow, Broadhurst, Buchanan, Krumweide, Rogers and Smith 1920, 209AL. In: Brenner DJ, Krieg NR, Staley JR, Garrity GM (eds) Bergey′s manual of systematic bacteriology, 2nd edn, vol 2, part B. Springer, New York, pp 670–679Google Scholar
  34. He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206PubMedCrossRefGoogle Scholar
  35. Heimann MF, Worf GL (1985) Fire blight of raspberry caused by Erwinia amylovora in Wisconsin. Plant Dis 69:360CrossRefGoogle Scholar
  36. Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner (eds) Genetics and genomics of Rosaceae. Series Plant Genetics and Genomics: Crops and models, vol 6. Springer, New York, pp 1–17Google Scholar
  37. Jakovljevic V, Jock S, Du Z, Geider K (2008) Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Microbial Biotech 1:416–424CrossRefGoogle Scholar
  38. Jock S, Langlotz C, Geider K (2005) Survival and possible spread of Erwinia amylovora and related plant-pathogenic bacteria exposed to environmental stress conditions. J Phytopathol 153:87–93CrossRefGoogle Scholar
  39. Johnson KB, Sawyer TL, Stockwell VO, Temple TN (2008) Implications of pathogenesis by Erwinia amylovora on rosaceous stigmas to biological control of fire blight. Phytopathology 99:128–138CrossRefGoogle Scholar
  40. Kim JF, Beer SV (2000) Hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 141–161CrossRefGoogle Scholar
  41. Kim W-S, Gardan L, Rhim S-L, Geider K (1999) Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906PubMedCrossRefGoogle Scholar
  42. Kim W-S, Hildebrand M, Jock S, Geider K (2001a) Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147:2951–2959PubMedGoogle Scholar
  43. Kim W-S, Jock S, Paulin J-P, Rhim S-L, Geider K (2001b) Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis 85:1183–1188CrossRefGoogle Scholar
  44. Kim W-S, Schollmeyer M, Nimtz M, Wray V, Geider K (2002) Genetics of biosynthesis and structure of the capsular exopolysaccharide from the Asian pear pathogen Erwinia pyrifoliae. Microbiology 148:4015–4024PubMedGoogle Scholar
  45. Klement Z (1982) Hypersensitivity. In: Mount MS, Lacy GS (eds) Phytopathogenic prokaryotes, vol 2. Academic Press, New York, pp 149–177Google Scholar
  46. Koczan JM, McGrath JM, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244PubMedCrossRefGoogle Scholar
  47. Korba J, Šillerová J (2010) First occurrence of fire blight native infection on apricot (Prunus armeniaca) in the Czech Republic. In: Abstracts of the 12th international workshop on fire blight. Warsaw, Poland, p 107Google Scholar
  48. Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008a) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222PubMedCrossRefGoogle Scholar
  49. Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genom 11:393.
  50. Kube M, Reinhardt R, Jakovljevic V, Jock S, Geider K (2008b) The genomic sequence of the fire blight antagonist Erwinia tasmaniensis compared with virulence regions of E. amylovora. Acta Hort 793:141–144Google Scholar
  51. López MM, Roselló M, Llop P, Ferrer S, Christen R, Gardan L (2011) Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61:561–567PubMedCrossRefGoogle Scholar
  52. Maes M, Orye K, Bobev S, Devreese B, Van Beeumen J, De Bruyn A, Busson R, Herdewijn P, Morreel K, Messens E (2001) Influence of amylovoran production on virulence of Erwinia amylovora and different amylovoran structure in E. amylovora isolates from Rubus. Eur J Plant Pathol 107:839–844CrossRefGoogle Scholar
  53. Maxson-Stein K, McGhee GC, Smith JJ, Jones AL, Sundin GW (2003) Genetic analysis of a pathogenic Erwinia sp. isolated from pear in Japan. Phytopathology 93:1393–1399PubMedCrossRefGoogle Scholar
  54. McGhee GC, Schnabel EL, Maxon-Stein K, Jones B, Stromberg VK, Lacy GH, Jones AL (2002) Relatedness of chromosomal and plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora. Appl Environ Microbiol 68:6182–6192PubMedCrossRefGoogle Scholar
  55. McManus PS, Jones AL (1995) Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology 85:1547–1553CrossRefGoogle Scholar
  56. Mergaert J, Hauben L, Cnockaert MC, Swings J (1999) Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49:377–383PubMedCrossRefGoogle Scholar
  57. Mizuno A, Sato S, Kawai A, Nishiyama K (2000) Taxonomic position of the causal pathogen of bacterial shoot blight of pear. J Gen Plant Pathol 66:48–58CrossRefGoogle Scholar
  58. Mizuno A, Tsukamoto T, Shimizu Y, Ooya H, Matsuura T, Saito N, Sato S, Kikuchi S, Uzuki T, Azegami K (2010) Occurrence of bacterial black shoot disease of European pear in Yamagata Prefecture. J Gen Plant Pathol 76:43–51CrossRefGoogle Scholar
  59. Mohammadi M, Geider K (2007) Autoinducer Al-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria. FEMS Microbiol Lett 266:34–41PubMedCrossRefGoogle Scholar
  60. Mohan SK (2007) Natural incidence of shoot blight in Pluot® caused by Erwinia amylovora. In: Abstracts of the 11th international workshop on fire blight. Portland Oregon, USA, p 64Google Scholar
  61. Mohan SK, Bijman VP (1999) Susceptibility of Prunus species to Erwinia amylovora. Acta Hort 489:145–148Google Scholar
  62. Mohan SK, Thomsom SV (1996) An outbreak of fire blight in plums. Acta Hort 411:73–96Google Scholar
  63. Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century. Using new technologies that enhance host resistance in apple. Plant Dis 87:756–765CrossRefGoogle Scholar
  64. Oh C-S (2005) Characterization of HrpN-interacting proteins from plants, the Hrp pathogenicity island of Erwinia amylovora, and its proteins that affect the hypersensitive response. PhD thesis, Cornell University, Ithaca, NYGoogle Scholar
  65. Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192PubMedCrossRefGoogle Scholar
  66. Oh C-S, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138PubMedCrossRefGoogle Scholar
  67. Ordax M, Biosca EG, Wimalejeewa SC, López MM, Marco-Noales E (2009) Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state. J Appl Microbiol 107:106–116PubMedCrossRefGoogle Scholar
  68. Ordax M, Marco-Noales E, López MM, Biosca EG (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72:3482–4388PubMedCrossRefGoogle Scholar
  69. Ordax M, Marco-Noales E, López MM, Biosca EG (2010a) Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol 161:549–555Google Scholar
  70. Ordax M, Piquer-Salcedo JE, Sabater-Muñoz B, Biosca EG, López MM, Marco-Noales E (2010b) Transmission of Erwinia amylovora through the Mediterranean fruit fly Ceratitis capitata. In: Abstracts of the 12th international workshop on fire blight. Warsaw, Poland, p 52Google Scholar
  71. Palacio-Bielsa A, Cambra MA, López MM, Ordax M, Peñalver J, Gorris MT, Cambra M, Marco-Noales E, Llop P, Biosca EG, Roselló M, Montesinos E, Llorente I, Badosa E, Cabrefiga J, Bonaterra A, Ruz L, Moragrega C, Francés J, Díaz C (2009) El fuego bacteriano (Erwinia amylovora). Ministerio de Medio ambiente y Medio Rural y Marino, Madrid, Spain.
  72. Park DH, Thapa SP, Choi B-S, Kim W-S, Hur JH, Cho JM, Lim J-S, Choi I-Y, Lim CK (2011) Complete genome sequence of Japanese Erwinia strains Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587PubMedCrossRefGoogle Scholar
  73. Paulin J-P, Samson R (1973) Le feu bactérien en France II - caractères des souches d’Erwinia amylovora (Burril) Winslow et al. 1920, isolées du foyer franco-belge. Ann Phytopathol 5:389–397Google Scholar
  74. Plouvier B (1963) Distribution of aliphatic polyols and cyclitols. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, pp 313–336Google Scholar
  75. Powney R, Smits THM, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Lick J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with pathogenicity restricted to Rubus plants. J Bacteriol 193:785–786PubMedCrossRefGoogle Scholar
  76. Pusey PL, Rudell DR, Curry EA, Mattheis JP (2008) Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience 43:1471–1478Google Scholar
  77. Qazi PH, Johri S, Verma V, Khan L, Qazi GN (2004) Cloning, sequencing and partial characterisation of sorbitol transporter (srlT) gene encoding phosphotransferase system, glucitol/sorbitol-specific IIBC components of Erwinia herbicola ATCC 21998. Mol Biol Reports 31:143–149CrossRefGoogle Scholar
  78. Rhim S-L, Völksch B, Gardan L, Paulin J-P, Langlotz C, Kim W-S, Geider K (1999) Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol 48:514–520CrossRefGoogle Scholar
  79. Ries SM, Otterbacher AG (1977) Occurrence of fire blight on thornless blackberry in Illinois. Plant Dis Rep 61:232–235Google Scholar
  80. Roselló M, Ferrer S, Llop P, López MM, Christen R, Gardan L (2008) Description of Erwinia piriflorinigrans sp. nov., causal agent of pear blossom necrosis. Acta Hort 793:137–140Google Scholar
  81. Roselló M, Peñalver J, Llop P, Gorris MT, Chartier R, García F, Montón C, Cambra M, López MM (2006) Identification of an Erwinia sp. different from Erwinia amylovora and responsible for necrosis on pear blossoms. Can J Plant Pathol 28:30–41CrossRefGoogle Scholar
  82. Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinjour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021PubMedCrossRefGoogle Scholar
  83. Shrestha R, Koo JH, Park DH, Hwang I, Hur JH, Lim CK (2003) Erwinia pyrifoliae, a causal endemic pathogen of shoot blight of Asian pear tree in Korea. Plant Pathol J 19:294–300Google Scholar
  84. Shrestha R, Lee SH, Kim JE, Wilson C, Choi S-G, Park DH, Wang MH, Hur JH, Lim CK (2007) Diversity ad detection of Korean Erwinia pyrifoliae strains as determined by plasmid profiling, phylogenetic analysis and PCR. Plant Pathol 56:1023–1031CrossRefGoogle Scholar
  85. Sjulin TM, Beer SV (1978) Mechanism of wilt induction by amylovoran in Cotoneaster shoots and its relation to wilting of shoots infected by Erwinia amylovora. Phytopathology 68:89–94CrossRefGoogle Scholar
  86. Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genom 11:2.
  87. Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23:384–393PubMedCrossRefGoogle Scholar
  88. Smits THM, Rezzonico F, Duffy B (2011) Evolutionary insights from Erwinia amylovora genomics. J Biotechnol 155:34–39Google Scholar
  89. Sobiczewski P, Deckers T, Pulawska J (1997) Fire blight (Erwinia amylovora): some aspects of epidemiology and control. Research Institute of Pomology and Floriculture, SkierniewiceGoogle Scholar
  90. Starr MP, Cardona C, Folsom D (1951) Bacterial fire blight of raspberry. Phytopatology 41:915–919Google Scholar
  91. Steinberger E, Beer S (1988) Creation and complementation of pathogenicity mutants of Erwinia amylovora. Mol Plant Microbe Interact 1:135–144CrossRefGoogle Scholar
  92. Suhayda CG, Goodman RN (1981) Early proliferation and migration and subsequent xylem occlusion by Erwinia amylovora and fate of its extracellular polysaccharide (EPS) in apple shoots. Phytopathology 71:697–707Google Scholar
  93. Tanii A (1983) Fire blight like symptoms of pear and causal pathogen. In: Proceedings of the 12th plant bacterial disease workshop. Niigata, Japan (Abstr. in Japanese)Google Scholar
  94. Tanii A, Tamura O, Ozaki M (1981) Causal pathogen of fire blight-like symptoms of pear Ann Phytopath Soc Jpn 47:102 (Abstr. in Japanese)Google Scholar
  95. Thomson SV (2000) Epidemiology of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 9–36CrossRefGoogle Scholar
  96. van der Zwet T, Beer SV (1995) Fire Blight: its nature, prevention and control: a practical guide to integrated disease management, 2nd edn. United States Department of Agriculture Bulletin 631, WashingtonGoogle Scholar
  97. van der Zwet T, Keil HL (1979) Fire blight, a bacterial disease of rosaceous plants. USDA Agriculture Handbook 510, Science and Administration USDA, WashingtonGoogle Scholar
  98. Vanneste JL (2000) What is fire blight? Who is Erwinia amylovora? How to control it? Epidemiology of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 1–6CrossRefGoogle Scholar
  99. Vanneste JL, Lex S, Vermeulen M, Berger F (2002) Isolation of Erwinia amylovora from blighted plums (Prunus domestica) and potato roses (Rosa rugosa). Acta Hort 590:89–94Google Scholar
  100. Vanneste JL, Paulin J-P, Expert D (1990) Bacteriophate Mu as a genetic tool to study Erwinia amylovora pathogenicity and hypersensitive reaction on tobacco. J Bacteriol 172:932–941PubMedGoogle Scholar
  101. Verdonck L, Mergaert J, Rijckaert C, Swings J, Kersters K, De Ley J (1987) Genus Erwinia: a numerical analysis of phenotypic features. Int J Syst Bacteriol 37:4–18CrossRefGoogle Scholar
  102. Waite MB (1896) The cause and prevention of pear blight. United States Agriculture Department Yearbook 1895:295–300Google Scholar
  103. Wallaart RAM (1980) Distribution of sorbitol in Rosaceae. Phytochemistry 19:2603–2610CrossRefGoogle Scholar
  104. Wang DP, Korban SS, Zhao YF (2010) Molecular signatures of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192–198PubMedCrossRefGoogle Scholar
  105. Wei Z-M, Beer SV (1993) HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J Bacteriol 175:7985–7967Google Scholar
  106. Wei Z, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88PubMedCrossRefGoogle Scholar
  107. Wilson M, Sigee DC, Epton HAS (1990) Erwinia amylovora infection of Hawthorn blossom: III. The nectary. J Phytopathol 128:62–74CrossRefGoogle Scholar
  108. Young JM, Saddler GS, Takikawa Y, De Boer SH, Vauterin L, Gardan L, Gvozdyak RI, Stead DE (1996) Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol 75:721–763Google Scholar
  109. Zhang Y, Geider K (1999) Molecular analysis of the rlsA gene regulating levan production by the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 54:187–201CrossRefGoogle Scholar
  110. Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103PubMedCrossRefGoogle Scholar
  111. Zhao Y, He S-Y, Sundin GW (2006) The Erwinia amylovora avrRpt2 EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654Google Scholar
  112. Zhao Y, Wang D, Nakka S, Sundin GW, Korban SS (2009) Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genom 10:245. doi: 10.1186/1471-2164-10-245.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana Palacio-Bielsa
    • 1
    Email author
  • Montserrat Roselló
    • 2
  • Pablo Llop
    • 3
  • María M. López
    • 3
  1. 1.Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain
  2. 2.Laboratorio del Servicio de Sanidad Vegetal y Protección Fitosanitaria, Generalitat ValencianaSillaSpain
  3. 3.Instituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain

Personalised recommendations